FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes
- URL: http://arxiv.org/abs/2405.17958v3
- Date: Tue, 29 Oct 2024 06:30:29 GMT
- Title: FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes
- Authors: Yunsong Wang, Tianxin Huang, Hanlin Chen, Gim Hee Lee,
- Abstract summary: FreeSplat is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.
We propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views.
- Score: 50.534213038479926
- License:
- Abstract: Empowering 3D Gaussian Splatting with generalization ability is appealing. However, existing generalizable 3D Gaussian Splatting methods are largely confined to narrow-range interpolation between stereo images due to their heavy backbones, thus lacking the ability to accurately localize 3D Gaussian and support free-view synthesis across wide view range. In this paper, we present a novel framework FreeSplat that is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.Specifically, we firstly introduce Low-cost Cross-View Aggregation achieved by constructing adaptive cost volumes among nearby views and aggregating features using a multi-scale structure. Subsequently, we present the Pixel-wise Triplet Fusion to eliminate redundancy of 3D Gaussians in overlapping view regions and to aggregate features observed across multiple views. Additionally, we propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views. Our empirical results demonstrate state-of-the-art novel view synthesis peformances in both novel view rendered color maps quality and depth maps accuracy across different numbers of input views. We also show that FreeSplat performs inference more efficiently and can effectively reduce redundant Gaussians, offering the possibility of feed-forward large scene reconstruction without depth priors.
Related papers
- FewViewGS: Gaussian Splatting with Few View Matching and Multi-stage Training [15.634646420318731]
We present a 3D Gaussian-based novel view synthesis method using sparse input images.
We propose a multi-stage training scheme with matching-based consistency constraints imposed on the novel views.
This is achieved by using the matches of the available training images to supervise the generation of the novel views.
arXiv Detail & Related papers (2024-11-04T16:21:00Z) - Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis [25.924727931514735]
Generalizable 3DGS can reconstruct new scenes from sparse-view observations in a feed-forward inference manner.
Existing methods rely heavily on epipolar priors, which can be unreliable in complex realworld scenes.
We propose eFreeSplat, an efficient feed-forward 3DGS-based model for generalizable novel view synthesis.
arXiv Detail & Related papers (2024-10-30T08:51:29Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplat is a novel framework for generalizable 3D Gaussian Splatting.
It generates hierarchical 3D Gaussians via a coarse-to-fine strategy.
It significantly enhances reconstruction quality and cross-dataset generalization.
arXiv Detail & Related papers (2024-10-08T17:59:32Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
We introduce a method for novel view synthesis given only a single wide-baseline stereo image pair.
Existing approaches to novel view synthesis from sparse observations fail due to recovering incorrect 3D geometry.
We propose an efficient, image-space epipolar line sampling scheme to assemble image features for a target ray.
arXiv Detail & Related papers (2023-04-17T17:40:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - Stable View Synthesis [100.86844680362196]
We present Stable View Synthesis (SVS)
Given a set of source images depicting a scene from freely distributed viewpoints, SVS synthesizes new views of the scene.
SVS outperforms state-of-the-art view synthesis methods both quantitatively and qualitatively on three diverse real-world datasets.
arXiv Detail & Related papers (2020-11-14T07:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.