論文の概要: GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling
- arxiv url: http://arxiv.org/abs/2403.19655v2
- Date: Fri, 5 Apr 2024 09:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 18:06:16.482944
- Title: GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling
- Title(参考訳): GaussianCube:3次元生成モデルのための最適輸送を用いたガウス散乱の構造化
- Authors: Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen, Baining Guo,
- Abstract要約: 3次元ガウス散乱(GS)は3次元適合率とレンダリング速度の点でニューラルレイディアンス場よりも大幅に改善されている。
散在したガウス群によるこの非構造表現は、生成的モデリングにとって重要な課題である。
本稿では,GaussianCubeについて紹介する。
- 参考スコア(独自算出の注目度): 55.05713977022407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.
- Abstract(参考訳): 3次元ガウス散乱(GS)は3次元適合率とレンダリング速度の点でニューラルレイディアンス場よりも大幅に改善されている。
しかし、散在したガウス群によるこの非構造的表現は、生成的モデリングに重大な課題をもたらす。
この問題に対処するため,我々はGaussianCubeを紹介した。
我々はまず,自由ガウスの固定数を用いて高品質な適合結果が得られる改良された密度制約付きGSフィッティングアルゴリズムを提案し,その後,ガウスを最適輸送により事前に定義されたボクセルグリッドに再配置する。
構造的グリッド表現により、複雑な設計をせずに拡散生成モデリングにおいて、標準の3D U-Netをバックボーンとして使用できる。
ShapeNet と OmniObject3D で行った大規模な実験により,ガウスキューブを強力かつ多目的な3D表現として,定性的かつ定量的に再現できることを示す。
関連論文リスト
- L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DGは3次元ガウス拡散定式化による3次元ガウスの3次元モデリングのための最初のアプローチである。
我々は、部屋の大きさのシーンで効率的に操作するために、スパース畳み込みアーキテクチャーを用いている。
3Dガウス表現を利用することで、生成されたシーンを任意の視点からリアルタイムでレンダリングすることができる。
論文 参考訳(メタデータ) (2024-10-17T13:19:32Z) - Atlas Gaussians Diffusion for 3D Generation [37.68480030996363]
潜在拡散モデルは、新しい3D生成技術の開発に有効であることが証明されている。
鍵となる課題は、潜在空間と3D空間を結びつける高忠実で効率的な表現を設計することである。
我々は、フィードフォワードネイティブな3D生成のための新しい表現であるAtlas Gaussiansを紹介する。
論文 参考訳(メタデータ) (2024-08-23T13:27:27Z) - Large Point-to-Gaussian Model for Image-to-3D Generation [48.95861051703273]
2次元画像上での3次元拡散モデルから生成された初期点雲を入力する大規模点-ガウスモデルを提案する。
点雲はガウス生成に先立って最初の3次元幾何学を提供し、画像から3次元生成を著しく促進する。
論文 参考訳(メタデータ) (2024-08-20T15:17:53Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
本稿では,Gaussianを3D GANの3次元表現として利用し,その効率的かつ明示的な特徴を活用する。
生成したガウスの位置とスケールを効果的に正規化する階層的多スケールガウス表現を持つジェネレータアーキテクチャを導入する。
実験結果から,最先端の3D一貫したGANと比較して,レンダリング速度(x100)が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-05T05:52:20Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3Dガウススプラッティングは、高速で高品質なレンダリング機能で知られる3D再構成と生成のための強力な技術として登場した。
本稿では,テキスト入力から3次元ガウス表現を効率的に生成する新しい拡散型フレームワークGVGENを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:57:52Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。