MIST: Mitigating Intersectional Bias with Disentangled Cross-Attention Editing in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2403.19738v1
- Date: Thu, 28 Mar 2024 17:54:38 GMT
- Title: MIST: Mitigating Intersectional Bias with Disentangled Cross-Attention Editing in Text-to-Image Diffusion Models
- Authors: Hidir Yesiltepe, Kiymet Akdemir, Pinar Yanardag,
- Abstract summary: We introduce a method that addresses intersectional bias in diffusion-based text-to-image models by modifying cross-attention maps in a disentangled manner.
Our approach utilizes a pre-trained Stable Diffusion model, eliminates the need for an additional set of reference images, and preserves the original quality for unaltered concepts.
- Score: 3.3454373538792552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-based text-to-image models have rapidly gained popularity for their ability to generate detailed and realistic images from textual descriptions. However, these models often reflect the biases present in their training data, especially impacting marginalized groups. While prior efforts to debias language models have focused on addressing specific biases, such as racial or gender biases, efforts to tackle intersectional bias have been limited. Intersectional bias refers to the unique form of bias experienced by individuals at the intersection of multiple social identities. Addressing intersectional bias is crucial because it amplifies the negative effects of discrimination based on race, gender, and other identities. In this paper, we introduce a method that addresses intersectional bias in diffusion-based text-to-image models by modifying cross-attention maps in a disentangled manner. Our approach utilizes a pre-trained Stable Diffusion model, eliminates the need for an additional set of reference images, and preserves the original quality for unaltered concepts. Comprehensive experiments demonstrate that our method surpasses existing approaches in mitigating both single and intersectional biases across various attributes. We make our source code and debiased models for various attributes available to encourage fairness in generative models and to support further research.
Related papers
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
Text-to-Image (TTI) systems have come under increased scrutiny for social biases.
We investigate embedding spaces as a source of bias for TTI models.
We find that biased multimodal embeddings like CLIP can result in lower alignment scores for representationally balanced TTI models.
arXiv Detail & Related papers (2024-09-15T01:09:55Z) - MABR: A Multilayer Adversarial Bias Removal Approach Without Prior Bias Knowledge [6.208151505901749]
Models trained on real-world data often mirror and exacerbate existing social biases.
We introduce a novel adversarial training strategy that operates independently of prior bias-type knowledge.
Our method effectively reduces social biases without the need for demographic annotations.
arXiv Detail & Related papers (2024-08-10T09:11:01Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - RS-Corrector: Correcting the Racial Stereotypes in Latent Diffusion
Models [20.53932777919384]
We propose a framework called "RS-Corrector" to establish an anti-stereotypical preference in the latent space and update the latent code for refined generated results.
Extensive empirical evaluations demonstrate that the introduced themodel effectively corrects the racial stereotypes of the well-trained Stable Diffusion model.
arXiv Detail & Related papers (2023-12-08T02:59:29Z) - Exploring Social Bias in Downstream Applications of Text-to-Image
Foundation Models [72.06006736916821]
We use synthetic images to probe two applications of text-to-image models, image editing and classification, for social bias.
Using our methodology, we uncover meaningful and significant inter-sectional social biases in textitStable Diffusion, a state-of-the-art open-source text-to-image model.
Our findings caution against the uninformed adoption of text-to-image foundation models for downstream tasks and services.
arXiv Detail & Related papers (2023-12-05T14:36:49Z) - TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models [22.076898042211305]
We propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt.
Our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases.
We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts.
arXiv Detail & Related papers (2023-12-03T02:31:37Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
Diffusion models are increasingly popular in synthetic data generation and image editing applications.
We investigate the presence of bias in diffusion-based face generation models with respect to attributes such as gender, race, and age.
We examine how dataset size affects the attribute composition and perceptual quality of both diffusion and Generative Adversarial Network (GAN) based face generation models.
arXiv Detail & Related papers (2023-05-10T18:22:31Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.