Leveraging Counterfactual Paths for Contrastive Explanations of POMDP Policies
- URL: http://arxiv.org/abs/2403.19760v1
- Date: Thu, 28 Mar 2024 18:19:38 GMT
- Title: Leveraging Counterfactual Paths for Contrastive Explanations of POMDP Policies
- Authors: Benjamin Kraske, Zakariya Laouar, Zachary Sunberg,
- Abstract summary: XAI aims to reduce confusion and foster trust in systems by providing explanations of agent behavior.
POMDPs provide a flexible framework capable of reasoning over transition and state uncertainty.
This work investigates the use of user-provided counterfactuals to generate contrastive explanations of POMDP policies.
- Score: 2.4332936182093197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As humans come to rely on autonomous systems more, ensuring the transparency of such systems is important to their continued adoption. Explainable Artificial Intelligence (XAI) aims to reduce confusion and foster trust in systems by providing explanations of agent behavior. Partially observable Markov decision processes (POMDPs) provide a flexible framework capable of reasoning over transition and state uncertainty, while also being amenable to explanation. This work investigates the use of user-provided counterfactuals to generate contrastive explanations of POMDP policies. Feature expectations are used as a means of contrasting the performance of these policies. We demonstrate our approach in a Search and Rescue (SAR) setting. We analyze and discuss the associated challenges through two case studies.
Related papers
- Demystifying Reinforcement Learning in Production Scheduling via Explainable AI [0.7515066610159392]
Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems.
Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque.
We apply two explainable AI (xAI) frameworks to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production.
arXiv Detail & Related papers (2024-08-19T09:39:01Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
Understanding human behavior from observed data is critical for transparency and accountability in decision-making.
Consider real-world settings such as healthcare, in which modeling a decision-maker's policy is challenging.
We propose a data-driven representation of decision-making behavior that inheres transparency by design, accommodates partial observability, and operates completely offline.
arXiv Detail & Related papers (2023-10-28T13:06:14Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Fidelity-Induced Interpretable Policy Extraction for Reinforcement
Learning [6.622746736005175]
Deep Reinforcement Learning (DRL) has achieved remarkable success in sequential decision-making problems.
Existing DRL agents make decisions in an opaque fashion, hindering the user from establishing trust and scrutinizing weaknesses of the agents.
We propose a novel method, Fidelity-Induced Policy Extraction (FIPE)
arXiv Detail & Related papers (2023-09-12T10:03:32Z) - Explainability in AI Policies: A Critical Review of Communications,
Reports, Regulations, and Standards in the EU, US, and UK [1.5039745292757671]
We perform the first thematic and gap analysis of policies and standards on explainability in the EU, US, and UK.
We find that policies are often informed by coarse notions and requirements for explanations.
We propose recommendations on how to address explainability in regulations for AI systems.
arXiv Detail & Related papers (2023-04-20T07:53:07Z) - Explainable Reinforcement Learning via Model Transforms [18.385505289067023]
We argue that even if the underlying Markov Decision Process is not fully known, it can nevertheless be exploited to automatically generate explanations.
We suggest using formal MDP abstractions and transforms, previously used in the literature for expediting the search for optimal policies, to automatically produce explanations.
arXiv Detail & Related papers (2022-09-24T13:18:06Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.