Reinforcement Learning in Agent-Based Market Simulation: Unveiling Realistic Stylized Facts and Behavior
- URL: http://arxiv.org/abs/2403.19781v1
- Date: Thu, 28 Mar 2024 19:06:50 GMT
- Title: Reinforcement Learning in Agent-Based Market Simulation: Unveiling Realistic Stylized Facts and Behavior
- Authors: Zhiyuan Yao, Zheng Li, Matthew Thomas, Ionut Florescu,
- Abstract summary: Investors and regulators can benefit from a realistic market simulator that enables them to anticipate the consequences of their decisions in real markets.
Traditional rule-based market simulators often fall short in accurately capturing the dynamic behavior of market participants.
In this study, we explore an agent-based simulation framework employing reinforcement learning (RL) agents.
- Score: 7.8082951131908604
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Investors and regulators can greatly benefit from a realistic market simulator that enables them to anticipate the consequences of their decisions in real markets. However, traditional rule-based market simulators often fall short in accurately capturing the dynamic behavior of market participants, particularly in response to external market impact events or changes in the behavior of other participants. In this study, we explore an agent-based simulation framework employing reinforcement learning (RL) agents. We present the implementation details of these RL agents and demonstrate that the simulated market exhibits realistic stylized facts observed in real-world markets. Furthermore, we investigate the behavior of RL agents when confronted with external market impacts, such as a flash crash. Our findings shed light on the effectiveness and adaptability of RL-based agents within the simulation, offering insights into their response to significant market events.
Related papers
- Deep Reinforcement Learning Agents for Strategic Production Policies in Microeconomic Market Simulations [1.6499388997661122]
We propose a DRL-based approach to obtain an effective policy in competitive markets with multiple producers.
Our framework enables agents to learn adaptive production policies to several simulations that consistently outperform static and random strategies.
The results show that agents trained with DRL can strategically adjust production levels to maximize long-term profitability.
arXiv Detail & Related papers (2024-10-27T18:38:05Z) - An Experimental Study of Competitive Market Behavior Through LLMs [0.0]
This study explores the potential of large language models (LLMs) to conduct market experiments.
We model the behavior of market agents in a controlled experimental setting, assessing their ability to converge toward competitive equilibria.
arXiv Detail & Related papers (2024-09-12T18:50:13Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
We construct realistic spot and equity option market simulators for a single underlying on the basis of normalizing flows.
We leverage the conditional invertibility property of normalizing flows and introduce a scalable method to calibrate the joint distribution of a set of independent simulators.
arXiv Detail & Related papers (2021-12-13T17:34:28Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
We propose a synthetic market generator based on Conditional Generative Adversarial Networks (CGANs) trained on real aggregate-level historical data.
A CGAN-based "world" agent can generate meaningful orders in response to an experimental agent.
arXiv Detail & Related papers (2021-10-25T22:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.