Lindblad-like quantum tomography for non-Markovian quantum dynamical maps
- URL: http://arxiv.org/abs/2403.19799v1
- Date: Thu, 28 Mar 2024 19:29:12 GMT
- Title: Lindblad-like quantum tomography for non-Markovian quantum dynamical maps
- Authors: Santiago Varona, Markus Müller, Alejandro Bermudez,
- Abstract summary: We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
- Score: 46.350147604946095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Lindblad-like quantum tomography (L$\ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors. This approach enables the estimation of time-local master equations, including their possible negative decay rates, by maximizing a likelihood function subject to dynamical constraints. We discuss L$\ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function, and how these need to be distributed in time depending on the noise characteristics. By a detailed comparative study employing both frequentist and Bayesian approaches, we assess the accuracy and precision of L$\ell$QT of a dephasing quantum dynamical map that goes beyond the Lindblad limit, focusing on two different microscopic noise models that can be realised in either trapped-ion or superconducting-circuit architectures. We explore the optimization of the distribution of measurement times to minimize the estimation errors, assessing the superiority of each learning scheme conditioned on the degree of non-Markovinity of the noise, and setting the stage for future experimental designs of non-Markovian quantum tomography.
Related papers
- Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
Characterizing the dynamics of quantum systems is a central task for the development of quantum information processors.
We propose two different improvements of Lindbladian quantum tomography (LQT) that alleviate previous shortcomings.
arXiv Detail & Related papers (2024-03-12T09:58:37Z) - Dynamical quantum maps for single-qubit gates under universal non-Markovian noise [0.0]
Noise in quantum devices is ubiquitous and generally deleterious in settings where precision is required.
Here we derive a compact microscopic error model for single-qubit gates that only requires a single experimental input.
We find that experimental estimates of average gate errors measured through randomized benchmarking and reconstructed via quantum process tomography are tightly lower-bounded by our analytical estimates.
arXiv Detail & Related papers (2024-02-22T13:24:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Compressed gate characterization for quantum devices with
time-correlated noise [0.0]
We present a general framework for quantum process tomography (QPT) in the presence of time-correlated noise.
As an application of our method, we perform a comparative theoretical and experimental analysis of silicon spin qubits.
We find good agreement between our theoretically predicted process fidelities and two qubit interleaved randomized benchmarking fidelities of 99.8% measured in recent experiments on silicon spin qubits.
arXiv Detail & Related papers (2023-07-26T18:05:49Z) - Quantum simulation of dynamical phase transitions in noisy quantum
devices [0.0]
Zero-noise extrapolation provides an especially useful error mitigation method for noisy quantum devices.
Noise alters the behavior of the Loschmidt echo at the dynamical phase transition times.
Zero-noise extrapolation may be employed to recover quantum revivals of the Loschmidt echo.
arXiv Detail & Related papers (2022-11-15T17:22:20Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Lindblad Tomography of a Superconducting Quantum Processor [39.75448064054184]
Lindblad tomography is a hardware-agnostic characterization protocol for tomographically reconstructing the Hamiltonian and Lindblad operators of a quantum noise environment.
We show that this technique characterizes and accounts for state-preparation and measurement (SPAM) errors and allows one to place bounds on the fit to a Markovian model.
arXiv Detail & Related papers (2021-05-05T21:45:59Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.