Feature-Based Echo-State Networks: A Step Towards Interpretability and Minimalism in Reservoir Computer
- URL: http://arxiv.org/abs/2403.19806v1
- Date: Thu, 28 Mar 2024 19:41:17 GMT
- Title: Feature-Based Echo-State Networks: A Step Towards Interpretability and Minimalism in Reservoir Computer
- Authors: Debdipta Goswami,
- Abstract summary: This paper proposes a novel and interpretable recurrent neural-network structure using the echo-state network (ESN) paradigm for time-series prediction.
A systematic reservoir architecture is developed using smaller parallel reservoirs driven by different input combinations, known as features.
The resultant feature-based ESN (Feat-ESN) outperforms the traditional single-reservoir ESN with less reservoir nodes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a novel and interpretable recurrent neural-network structure using the echo-state network (ESN) paradigm for time-series prediction. While the traditional ESNs perform well for dynamical systems prediction, it needs a large dynamic reservoir with increased computational complexity. It also lacks interpretability to discern contributions from different input combinations to the output. Here, a systematic reservoir architecture is developed using smaller parallel reservoirs driven by different input combinations, known as features, and then they are nonlinearly combined to produce the output. The resultant feature-based ESN (Feat-ESN) outperforms the traditional single-reservoir ESN with less reservoir nodes. The predictive capability of the proposed architecture is demonstrated on three systems: two synthetic datasets from chaotic dynamical systems and a set of real-time traffic data.
Related papers
- Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
This paper proposes a novel deep reservoir computing framework, termed deep recurrent configuration network (DeepRSCN)
DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output.
Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input readout weights.
arXiv Detail & Related papers (2024-10-28T10:33:15Z) - Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
This paper develops a recurrent version of configuration networks (RSCNs) for problem solving.
We build an initial RSCN model in the light of a supervisory mechanism, followed by an online update of the output weights.
Numerical results clearly indicate that the proposed RSCN performs favourably over all of the datasets.
arXiv Detail & Related papers (2024-06-21T03:21:22Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Parallel Neural Networks in Golang [0.0]
This paper describes the design and implementation of parallel neural networks (PNNs) with the novel programming language Golang.
Golang and its inherent parallelization support proved very well for parallel neural network simulation by considerable decreased processing times compared to sequential variants.
arXiv Detail & Related papers (2023-04-19T11:56:36Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Exploiting Multiple Timescales in Hierarchical Echo State Networks [0.0]
Echo state networks (ESNs) are a powerful form of reservoir computing that only require training of linear output weights.
Here we explore the timescales in hierarchical ESNs, where the reservoir is partitioned into two smaller reservoirs linked with distinct properties.
arXiv Detail & Related papers (2021-01-11T22:33:17Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
We propose a novel architecture for recurrent neural networks.
Our proposed RNN is based on a time-discretization of a system of second-order ordinary differential equations.
Experiments show that the proposed RNN is comparable in performance to the state of the art on a variety of benchmarks.
arXiv Detail & Related papers (2020-10-02T12:35:04Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.