Recurrent Stochastic Configuration Networks with Incremental Blocks
- URL: http://arxiv.org/abs/2411.11303v1
- Date: Mon, 18 Nov 2024 05:58:47 GMT
- Title: Recurrent Stochastic Configuration Networks with Incremental Blocks
- Authors: Gang Dang, Dainhui Wang,
- Abstract summary: Recurrent configuration networks (RSCNs) have shown promise in modelling nonlinear dynamic systems with order uncertainty.
This paper develops the original RSCNs with block increments, termed block RSCNs (BRSCNs)
BRSCNs can simultaneously add multiple reservoir nodes (subreservoirs) during the construction.
- Score: 0.0
- License:
- Abstract: Recurrent stochastic configuration networks (RSCNs) have shown promise in modelling nonlinear dynamic systems with order uncertainty due to their advantages of easy implementation, less human intervention, and strong approximation capability. This paper develops the original RSCNs with block increments, termed block RSCNs (BRSCNs), to further enhance the learning capacity and efficiency of the network. BRSCNs can simultaneously add multiple reservoir nodes (subreservoirs) during the construction. Each subreservoir is configured with a unique structure in the light of a supervisory mechanism, ensuring the universal approximation property. The reservoir feedback matrix is appropriately scaled to guarantee the echo state property of the network. Furthermore, the output weights are updated online using a projection algorithm, and the persistent excitation conditions that facilitate parameter convergence are also established. Numerical results over a time series prediction, a nonlinear system identification task, and two industrial data predictive analyses demonstrate that the proposed BRSCN performs favourably in terms of modelling efficiency, learning, and generalization performance, highlighting their significant potential for coping with complex dynamics.
Related papers
- Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
This paper proposes a novel deep reservoir computing framework, termed deep recurrent configuration network (DeepRSCN)
DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output.
Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input readout weights.
arXiv Detail & Related papers (2024-10-28T10:33:15Z) - Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling [3.8719670789415925]
Recurrent configuration networks (RSCNs) are a class of randomized models that have shown promise in modelling nonlinear dynamics.
This paper aims at developing a self-organizing version of RSCNs, termed as SORSCNs, to enhance the continuous learning ability of the network for modelling nonstationary data.
arXiv Detail & Related papers (2024-10-14T01:28:25Z) - Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
This paper develops a recurrent version of configuration networks (RSCNs) for problem solving.
We build an initial RSCN model in the light of a supervisory mechanism, followed by an online update of the output weights.
Numerical results clearly indicate that the proposed RSCN performs favourably over all of the datasets.
arXiv Detail & Related papers (2024-06-21T03:21:22Z) - Feature-Based Echo-State Networks: A Step Towards Interpretability and Minimalism in Reservoir Computer [0.0]
This paper proposes a novel and interpretable recurrent neural-network structure using the echo-state network (ESN) paradigm for time-series prediction.
A systematic reservoir architecture is developed using smaller parallel reservoirs driven by different input combinations, known as features.
The resultant feature-based ESN (Feat-ESN) outperforms the traditional single-reservoir ESN with less reservoir nodes.
arXiv Detail & Related papers (2024-03-28T19:41:17Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
We show that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.
Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks.
arXiv Detail & Related papers (2020-06-22T08:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.