ChatTracer: Large Language Model Powered Real-time Bluetooth Device Tracking System
- URL: http://arxiv.org/abs/2403.19833v2
- Date: Tue, 9 Jul 2024 12:56:01 GMT
- Title: ChatTracer: Large Language Model Powered Real-time Bluetooth Device Tracking System
- Authors: Qijun Wang, Shichen Zhang, Kunzhe Song, Huacheng Zeng,
- Abstract summary: We present ChatTracer, an LLM-powered real-time Bluetooth device tracking system.
ChatTracer comprises an array of Bluetooth sniffing nodes, a database, and a fine-tuned LLM.
We have built a prototype of ChatTracer with four sniffing nodes.
- Score: 7.21848268647674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have transformed the way we interact with cyber technologies. In this paper, we study the possibility of connecting LLM with wireless sensor networks (WSN). A successful design will not only extend LLM's knowledge landscape to the physical world but also revolutionize human interaction with WSN. To the end, we present ChatTracer, an LLM-powered real-time Bluetooth device tracking system. ChatTracer comprises three key components: an array of Bluetooth sniffing nodes, a database, and a fine-tuned LLM. ChatTracer was designed based on our experimental observation that commercial Apple/Android devices always broadcast hundreds of BLE packets per minute even in their idle status. Its novelties lie in two aspects: i) a reliable and efficient BLE packet grouping algorithm; and ii) an LLM fine-tuning strategy that combines both supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF). We have built a prototype of ChatTracer with four sniffing nodes. Experimental results show that ChatTracer not only outperforms existing localization approaches, but also provides an intelligent interface for user interaction.
Related papers
- CUIfy the XR: An Open-Source Package to Embed LLM-powered Conversational Agents in XR [31.49021749468963]
Large language model (LLM)powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR.
We provide the community with an open-source, customizable, and privacy-aware Unity package, CUIfy, that facilitates speech-based NPC-user interaction with various LLMs, STT, and TTS models.
arXiv Detail & Related papers (2024-11-07T12:55:17Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - WDMoE: Wireless Distributed Large Language Models with Mixture of Experts [65.57581050707738]
We propose a wireless distributed Large Language Models (LLMs) paradigm based on Mixture of Experts (MoE)
We decompose the MoE layer in LLMs by deploying the gating network and the preceding neural network layer at base station (BS) and mobile devices.
We design an expert selection policy by taking into account both the performance of the model and the end-to-end latency.
arXiv Detail & Related papers (2024-05-06T02:55:50Z) - Revolutionizing Mobile Interaction: Enabling a 3 Billion Parameter GPT
LLM on Mobile [0.0]
This article presents an innovative approach to LLM inference, envisioning a future where LLMs with billions of parameters can be executed directly on mobile devices without network connectivity.
The article showcases a fine-tuned GPT LLM with 3 billion parameters that can operate smoothly on devices with as low as 4GB of memory.
Through the integration of native code and model quantization techniques, the application not only serves as a general-purpose assistant but also facilitates seamless mobile interactions with text-to-actions features.
arXiv Detail & Related papers (2023-09-29T16:30:49Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNs and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL)
We present a novel MTL model by combining both merits of deformable CNN and query-based Transformer with shared gating for multi-task learning of dense prediction.
arXiv Detail & Related papers (2023-08-10T17:37:49Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
We present Minkowski Tracker, a sparse-temporal R-CNN that jointly solves object detection and tracking problems.
Inspired by region-based CNN (R-CNN), we propose to track motion as a second stage of the object detector R-CNN.
We show in large-scale experiments that the overall performance gain of our method is due to four factors.
arXiv Detail & Related papers (2022-08-22T04:47:40Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.