Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data
- URL: http://arxiv.org/abs/2405.06299v1
- Date: Fri, 10 May 2024 08:04:27 GMT
- Title: Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data
- Authors: Jingzhi Hu, Dusit Niyato, Jun Luo,
- Abstract summary: Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
- Score: 55.70071704247794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs). Using the channel state information (CSI) across multiple frequency bands, RIS-aided multi-band ISAC systems can potentially track users' positions with high precision. Though tracking with CSI is desirable as no communication overheads are incurred, it faces challenges due to the multi-modalities of CSI samples, irregular and asynchronous data traffic, and sparse labeled data for learning the tracking function. This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner, tackling the sparsity of labeled data for the target deployment environment (namely, target domain) by adapting the knowledge learned from another environment (namely, source domain). Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques. Simulation results verify that X2Track achieves decimeter-level axial tracking errors even under scarce UL data traffic and strong interference conditions and can adapt to diverse deployment environments with fewer than 5% training data, or equivalently, 5 minutes of UE tracks, being labeled.
Related papers
- HSTrack: Bootstrap End-to-End Multi-Camera 3D Multi-object Tracking with Hybrid Supervision [34.7347336548199]
In camera-based 3D multi-object tracking (MOT), the prevailing methods follow the tracking-by-query-propagation paradigm.
We present HSTrack, a novel plug-and-play method designed to co-facilitate multi-task learning for detection and tracking.
arXiv Detail & Related papers (2024-11-11T08:18:49Z) - An Efficient Privacy-aware Split Learning Framework for Satellite Communications [33.608696987158424]
We propose a novel framework for more efficient SL in satellite communications.
Our approach, Dynamic Topology Informed Pruning, combines differential privacy with graph and model pruning to optimize graph neural networks for distributed learning.
Our framework not only significantly improves the operational efficiency of satellite communications but also establishes a new benchmark in privacy-aware distributed learning.
arXiv Detail & Related papers (2024-09-13T04:59:35Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - NetRCA: An Effective Network Fault Cause Localization Algorithm [22.88986905436378]
Localizing root cause of network faults is crucial to network operation and maintenance.
We propose a novel algorithm named NetRCA to deal with this problem.
Experiments and analysis are conducted on the real-world dataset from ICASSP 2022 AIOps Challenge.
arXiv Detail & Related papers (2022-02-23T02:03:35Z) - Auto-Transfer: Learning to Route Transferrable Representations [77.30427535329571]
We propose a novel adversarial multi-armed bandit approach which automatically learns to route source representations to appropriate target representations.
We see upwards of 5% accuracy improvements compared with the state-of-the-art knowledge transfer methods.
arXiv Detail & Related papers (2022-02-02T13:09:27Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.