Concept-based Analysis of Neural Networks via Vision-Language Models
- URL: http://arxiv.org/abs/2403.19837v3
- Date: Wed, 10 Apr 2024 23:47:34 GMT
- Title: Concept-based Analysis of Neural Networks via Vision-Language Models
- Authors: Ravi Mangal, Nina Narodytska, Divya Gopinath, Boyue Caroline Hu, Anirban Roy, Susmit Jha, Corina Pasareanu,
- Abstract summary: We propose to leverage emerging multimodal, vision-language, foundation models (VLMs) as a lens through which we can reason about vision models.
We describe a logical specification language $textttCon_textttspec$ designed to facilitate writing specifications in terms of these concepts.
We build a map between the internal representations of a given vision model and a VLM, leading to an efficient verification procedure of natural-language properties for vision models.
- Score: 17.406352568156542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The analysis of vision-based deep neural networks (DNNs) is highly desirable but it is very challenging due to the difficulty of expressing formal specifications for vision tasks and the lack of efficient verification procedures. In this paper, we propose to leverage emerging multimodal, vision-language, foundation models (VLMs) as a lens through which we can reason about vision models. VLMs have been trained on a large body of images accompanied by their textual description, and are thus implicitly aware of high-level, human-understandable concepts describing the images. We describe a logical specification language $\texttt{Con}_{\texttt{spec}}$ designed to facilitate writing specifications in terms of these concepts. To define and formally check $\texttt{Con}_{\texttt{spec}}$ specifications, we build a map between the internal representations of a given vision model and a VLM, leading to an efficient verification procedure of natural-language properties for vision models. We demonstrate our techniques on a ResNet-based classifier trained on the RIVAL-10 dataset using CLIP as the multimodal model.
Related papers
- Decoupled Visual Interpretation and Linguistic Reasoning for Math Problem Solving [57.22004912994658]
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs)<n>This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework.
arXiv Detail & Related papers (2025-05-23T08:18:00Z) - Vision-Language Modeling Meets Remote Sensing: Models, Datasets and Perspectives [36.297745473653166]
Vision-language modeling (VLM) aims to bridge the information gap between images and natural language.<n>Under the new paradigm of first pre-training on massive image-text pairs and then fine-tuning on task-specific data, VLM in the remote sensing domain has made significant progress.
arXiv Detail & Related papers (2025-05-20T13:47:40Z) - V2C-CBM: Building Concept Bottlenecks with Vision-to-Concept Tokenizer [19.177297480709512]
Concept Bottleneck Models (CBMs) offer inherent interpretability by translating images into human-comprehensible concepts.<n>Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks.<n>In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models.
arXiv Detail & Related papers (2025-01-09T05:12:38Z) - Language Model as Visual Explainer [72.88137795439407]
We present a systematic approach for interpreting vision models using a tree-structured linguistic explanation.
Our method provides human-understandable explanations in the form of attribute-laden trees.
To access the effectiveness of our approach, we introduce new benchmarks and conduct rigorous evaluations.
arXiv Detail & Related papers (2024-12-08T20:46:23Z) - Towards Interpreting Visual Information Processing in Vision-Language Models [24.51408101801313]
Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images.
We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM.
arXiv Detail & Related papers (2024-10-09T17:55:02Z) - VISTA: A Visual and Textual Attention Dataset for Interpreting Multimodal Models [2.0718016474717196]
integrated Vision and Language Models (VLMs) are frequently regarded as black boxes within the machine learning research community.
We present an image-text aligned human visual attention dataset that maps specific associations between image regions and corresponding text segments.
We then compare the internal heatmaps generated by VL models with this dataset, allowing us to analyze and better understand the model's decision-making process.
arXiv Detail & Related papers (2024-10-06T20:11:53Z) - How to Determine the Preferred Image Distribution of a Black-Box Vision-Language Model? [2.3993515715868714]
We propose a novel, generalizable methodology to identify preferred image distributions for Vision-Language Models (VLMs)
Applying this to different rendering types of 3D objects, we demonstrate its efficacy across various domains requiring precise interpretation of complex structures.
To address the lack of benchmarks in specialized domains, we introduce CAD-VQA, a new dataset for evaluatingVLMs on CAD-related visual question answering tasks.
arXiv Detail & Related papers (2024-09-03T19:26:13Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - In-Context Learning Improves Compositional Understanding of Vision-Language Models [2.762909189433944]
compositional image understanding remains a rather difficult task due to the object bias present in training data.
We compare contrastive models with generative ones and analyze their differences in architecture, pre-training data, and training tasks and losses.
Our proposed approach outperforms baseline models across multiple compositional understanding datasets.
arXiv Detail & Related papers (2024-07-22T09:03:29Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - DeViL: Decoding Vision features into Language [53.88202366696955]
Post-hoc explanation methods have often been criticised for abstracting away the decision-making process of deep neural networks.
In this work, we would like to provide natural language descriptions for what different layers of a vision backbone have learned.
We train a transformer network to translate individual image features of any vision layer into a prompt that a separate off-the-shelf language model decodes into natural language.
arXiv Detail & Related papers (2023-09-04T13:59:55Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.