How to Determine the Preferred Image Distribution of a Black-Box Vision-Language Model?
- URL: http://arxiv.org/abs/2409.02253v3
- Date: Tue, 15 Oct 2024 18:40:09 GMT
- Title: How to Determine the Preferred Image Distribution of a Black-Box Vision-Language Model?
- Authors: Saeid Asgari Taghanaki, Joseph Lambourne, Alana Mongkhounsavath,
- Abstract summary: We propose a novel, generalizable methodology to identify preferred image distributions for Vision-Language Models (VLMs)
Applying this to different rendering types of 3D objects, we demonstrate its efficacy across various domains requiring precise interpretation of complex structures.
To address the lack of benchmarks in specialized domains, we introduce CAD-VQA, a new dataset for evaluatingVLMs on CAD-related visual question answering tasks.
- Score: 2.3993515715868714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large foundation models have revolutionized the field, yet challenges remain in optimizing multi-modal models for specialized visual tasks. We propose a novel, generalizable methodology to identify preferred image distributions for black-box Vision-Language Models (VLMs) by measuring output consistency across varied input prompts. Applying this to different rendering types of 3D objects, we demonstrate its efficacy across various domains requiring precise interpretation of complex structures, with a focus on Computer-Aided Design (CAD) as an exemplar field. We further refine VLM outputs using in-context learning with human feedback, significantly enhancing explanation quality. To address the lack of benchmarks in specialized domains, we introduce CAD-VQA, a new dataset for evaluating VLMs on CAD-related visual question answering tasks. Our evaluation of state-of-the-art VLMs on CAD-VQA establishes baseline performance levels, providing a framework for advancing VLM capabilities in complex visual reasoning tasks across various fields requiring expert-level visual interpretation. We release the dataset and evaluation codes at \url{https://github.com/asgsaeid/cad_vqa}.
Related papers
- VisualQuest: A Diverse Image Dataset for Evaluating Visual Recognition in LLMs [12.64051404166593]
This paper introduces VisualQuest, a novel image dataset designed to assess the ability of large language models to interpret non-traditional, stylized imagery.
Unlike conventional photographic benchmarks, VisualQuest challenges models with images that incorporate abstract, symbolic, and metaphorical elements.
arXiv Detail & Related papers (2025-03-25T01:23:11Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
We propose RSUniVLM, a unified, end-to-end RS VLM for comprehensive vision understanding across multiple granularity.
RSUniVLM performs effectively in multi-image analysis, with instances of change detection and change captioning.
We also construct a large-scale RS instruction-following dataset based on a variety of existing datasets in both RS and general domain.
arXiv Detail & Related papers (2024-12-07T15:11:21Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
We find that present-day Vision-Language Models (VLMs) lack a fundamental cognitive ability: learning to localize specific objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
We introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning.
It embeds question awareness directly within the vision encoder.
This integration results in dynamic visual features focusing on relevant image aspects to the posed question.
arXiv Detail & Related papers (2024-02-08T08:03:39Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.