MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection
- URL: http://arxiv.org/abs/2403.19888v4
- Date: Tue, 23 Jul 2024 21:33:06 GMT
- Title: MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection
- Authors: Ali Behrouz, Michele Santacatterina, Ramin Zabih,
- Abstract summary: MambaMixer is a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels.
As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block.
- Score: 5.37935922811333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - A Mamba Foundation Model for Time Series Forecasting [13.593170999506889]
We introduce TSMamba, a linear-complexity foundation model for time series forecasting built on the Mamba architecture.
The model captures temporal dependencies through both forward and backward Mamba encoders, achieving high prediction accuracy.
It also achieves competitive or superior full-shot performance compared to task-specific prediction models.
arXiv Detail & Related papers (2024-11-05T09:34:05Z) - TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models [0.0]
We propose replacing time-oriented Transformers with State-Space Models (SSM)
We develop a model that integrates SSM, Graph Neural Networks, and node-oriented Transformers to achieve enhanced representations.
arXiv Detail & Related papers (2024-10-08T11:10:06Z) - Mamba or Transformer for Time Series Forecasting? Mixture of Universals (MoU) Is All You Need [28.301119776877822]
Time series forecasting requires balancing short-term and long-term dependencies for accurate predictions.
Transformers are superior in modeling long-term dependencies but are criticized for their quadratic computational cost.
Mamba provides a near-linear alternative but is reported less effective in time series longterm forecasting due to potential information loss.
arXiv Detail & Related papers (2024-08-28T17:59:27Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
State-space models (SSMs) have showcased effective performance in modeling long-range dependencies with subquadratic complexity.
However, pure SSM-based models still face challenges related to stability and achieving optimal performance on computer vision tasks.
Our paper addresses the challenges of scaling SSM-based models for computer vision, particularly the instability and inefficiency of large model sizes.
arXiv Detail & Related papers (2024-07-18T17:59:58Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting [5.166854384000439]
Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns.
Recently, a new state space model (SSM) named Mamba is proposed.
With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency.
arXiv Detail & Related papers (2024-04-24T09:45:48Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.