Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting
- URL: http://arxiv.org/abs/2404.15772v3
- Date: Thu, 27 Jun 2024 03:31:25 GMT
- Title: Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting
- Authors: Aobo Liang, Xingguo Jiang, Yan Sun, Xiaohou Shi, Ke Li,
- Abstract summary: Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns.
Recently, a new state space model (SSM) named Mamba is proposed.
With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency.
- Score: 5.166854384000439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns. Over the past few years, deep learning models especially Transformers have achieved advanced performance in LTSF tasks. However, LTSF faces inherent challenges such as long-term dependencies capturing and sparse semantic characteristics. Recently, a new state space model (SSM) named Mamba is proposed. With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency compared to Transformers. To enhance Mamba's ability to preserve historical information in a longer range, we design a novel Mamba+ block by adding a forget gate inside Mamba to selectively combine the new features with the historical features in a complementary manner. Furthermore, we apply Mamba+ both forward and backward and propose Bi-Mamba+, aiming to promote the model's ability to capture interactions among time series elements. Additionally, multivariate time series data in different scenarios may exhibit varying emphasis on intra- or inter-series dependencies. Therefore, we propose a series-relation-aware decider that controls the utilization of channel-independent or channel-mixing tokenization strategy for specific datasets. Extensive experiments on 8 real-world datasets show that our model achieves more accurate predictions compared with state-of-the-art methods.
Related papers
- Integration of Mamba and Transformer -- MAT for Long-Short Range Time Series Forecasting with Application to Weather Dynamics [7.745945701278489]
Long-short range time series forecasting is essential for predicting future trends and patterns over extended periods.
Deep learning models such as Transformers have made significant strides in advancing time series forecasting.
This article examines the advantages and disadvantages of both Mamba and Transformer models.
arXiv Detail & Related papers (2024-09-13T04:23:54Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - FMamba: Mamba based on Fast-attention for Multivariate Time-series Forecasting [6.152779144421304]
We introduce a novel framework named FMamba for multivariate time-series forecasting (MTSF)
Technically, we first extract the temporal features of the input variables through an embedding layer, then compute the dependencies among input variables via the fast-attention module.
We use Mamba to selectively deal with the input features and further extract the temporal dependencies of the variables through the multi-layer perceptron block (MLP-block)
Finally, FMamba obtains the predictive results through the projector, a linear layer.
arXiv Detail & Related papers (2024-07-20T09:14:05Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting [12.08746904573603]
Mamba, based on selective state space models (SSMs), has emerged as a competitive alternative to Transformer.
We propose four targeted improvements, leading to MambaTS.
Experiments conducted on eight public datasets demonstrate that MambaTS achieves new state-of-the-art performance.
arXiv Detail & Related papers (2024-05-26T05:50:17Z) - Is Mamba Effective for Time Series Forecasting? [30.85990093479062]
We propose a Mamba-based model named Simple-Mamba (S-Mamba) for time series forecasting.
Specifically, we tokenize the time points of each variate autonomously via a linear layer.
Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance.
arXiv Detail & Related papers (2024-03-17T08:50:44Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.