Heterogeneous Network Based Contrastive Learning Method for PolSAR Land Cover Classification
- URL: http://arxiv.org/abs/2403.19902v2
- Date: Sat, 4 May 2024 03:47:06 GMT
- Title: Heterogeneous Network Based Contrastive Learning Method for PolSAR Land Cover Classification
- Authors: Jianfeng Cai, Yue Ma, Zhixi Feng, Shuyuan Yang,
- Abstract summary: Supervised learning (SL) requires a large amount of labeled PolSAR data with high quality to achieve better performance.
This article proposes a Heterogeneous Network based Contrastive Learning method(HCLNet)
It aims to learn high-level representation from unlabeled PolSAR data for few-shot classification according to multi-features and superpixels.
- Score: 18.37842655634498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polarimetric synthetic aperture radar (PolSAR) image interpretation is widely used in various fields. Recently, deep learning has made significant progress in PolSAR image classification. Supervised learning (SL) requires a large amount of labeled PolSAR data with high quality to achieve better performance, however, manually labeled data is insufficient. This causes the SL to fail into overfitting and degrades its generalization performance. Furthermore, the scattering confusion problem is also a significant challenge that attracts more attention. To solve these problems, this article proposes a Heterogeneous Network based Contrastive Learning method(HCLNet). It aims to learn high-level representation from unlabeled PolSAR data for few-shot classification according to multi-features and superpixels. Beyond the conventional CL, HCLNet introduces the heterogeneous architecture for the first time to utilize heterogeneous PolSAR features better. And it develops two easy-to-use plugins to narrow the domain gap between optics and PolSAR, including feature filter and superpixel-based instance discrimination, which the former is used to enhance the complementarity of multi-features, and the latter is used to increase the diversity of negative samples. Experiments demonstrate the superiority of HCLNet on three widely used PolSAR benchmark datasets compared with state-of-the-art methods. Ablation studies also verify the importance of each component. Besides, this work has implications for how to efficiently utilize the multi-features of PolSAR data to learn better high-level representation in CL and how to construct networks suitable for PolSAR data better.
Related papers
- Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - SDF2Net: Shallow to Deep Feature Fusion Network for PolSAR Image
Classification [1.2349871196144497]
Convolutional neural networks (CNNs) play a crucial role in capturing PolSAR image characteristics.
In this study, a novel three-branch fusion of complex-valued CNN, named the Shallow to Deep Feature Fusion Network (SDF2Net), is proposed for PolSAR image classification.
The results indicate that the proposed approach demonstrates improvements in overallaccuracy, with a 1.3% and 0.8% enhancement for the AIRSAR datasets and a 0.5% improvement for the ESAR dataset.
arXiv Detail & Related papers (2024-02-27T16:46:21Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Deep Transfer Learning for Land Use Land Cover Classification: A
Comparative Study [0.0]
In this study, instead of training CNNs from scratch, we make use of transfer learning to fine-tune pre-trained networks.
With the proposed approaches we were able to address the limited-data problem and achieved very good accuracy.
arXiv Detail & Related papers (2021-10-06T08:46:57Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
We develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A$2$F) for SISR.
Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods.
arXiv Detail & Related papers (2020-11-13T06:01:46Z) - Classification of Polarimetric SAR Images Using Compact Convolutional
Neural Networks [24.553598498985796]
A novel and systematic classification framework is proposed for the classification of PolSAR images.
It is based on a compact and adaptive implementation of CNNs using a sliding-window classification approach.
The proposed approach can perform classification using smaller window sizes than deep CNNs.
arXiv Detail & Related papers (2020-11-10T17:09:11Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Unsupervised Deep Representation Learning and Few-Shot Classification of
PolSAR Images [16.594052017558223]
This paper proposes a PolSAR-tailored contrastive learning network (PCLNet) for unsupervised deep representation learning and few-shot classification.
PCLNet develops an unsupervised pre-training phase based on the proxy objective of instance discrimination to learn useful representations from unlabeled PolSAR data.
Experiments on two widely-used PolSAR benchmark datasets confirm the validity of PCLNet.
arXiv Detail & Related papers (2020-06-27T12:15:32Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.