Classification of Polarimetric SAR Images Using Compact Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2011.05243v1
- Date: Tue, 10 Nov 2020 17:09:11 GMT
- Title: Classification of Polarimetric SAR Images Using Compact Convolutional
Neural Networks
- Authors: Mete Ahishali, Serkan Kiranyaz, Turker Ince, Moncef Gabbouj
- Abstract summary: A novel and systematic classification framework is proposed for the classification of PolSAR images.
It is based on a compact and adaptive implementation of CNNs using a sliding-window classification approach.
The proposed approach can perform classification using smaller window sizes than deep CNNs.
- Score: 24.553598498985796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification of polarimetric synthetic aperture radar (PolSAR) images is an
active research area with a major role in environmental applications. The
traditional Machine Learning (ML) methods proposed in this domain generally
focus on utilizing highly discriminative features to improve the classification
performance, but this task is complicated by the well-known "curse of
dimensionality" phenomena. Other approaches based on deep Convolutional Neural
Networks (CNNs) have certain limitations and drawbacks, such as high
computational complexity, an unfeasibly large training set with ground-truth
labels, and special hardware requirements. In this work, to address the
limitations of traditional ML and deep CNN based methods, a novel and
systematic classification framework is proposed for the classification of
PolSAR images, based on a compact and adaptive implementation of CNNs using a
sliding-window classification approach. The proposed approach has three
advantages. First, there is no requirement for an extensive feature extraction
process. Second, it is computationally efficient due to utilized compact
configurations. In particular, the proposed compact and adaptive CNN model is
designed to achieve the maximum classification accuracy with minimum training
and computational complexity. This is of considerable importance considering
the high costs involved in labelling in PolSAR classification. Finally, the
proposed approach can perform classification using smaller window sizes than
deep CNNs. Experimental evaluations have been performed over the most
commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band
data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained
overall accuracies range between 92.33 - 99.39% for these benchmark study
sites.
Related papers
- Heterogeneous Network Based Contrastive Learning Method for PolSAR Land Cover Classification [18.37842655634498]
Supervised learning (SL) requires a large amount of labeled PolSAR data with high quality to achieve better performance.
This article proposes a Heterogeneous Network based Contrastive Learning method(HCLNet)
It aims to learn high-level representation from unlabeled PolSAR data for few-shot classification according to multi-features and superpixels.
arXiv Detail & Related papers (2024-03-29T01:05:23Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
This paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers.
Experiments on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T18:10:26Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - Layer-adaptive sparsity for the Magnitude-based Pruning [88.37510230946478]
We propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score.
LAMP consistently outperforms popular existing schemes for layerwise sparsity selection.
arXiv Detail & Related papers (2020-10-15T09:14:02Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance.
In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier(RPC) demonstrate significantly different transferability when facing large domain gap.
arXiv Detail & Related papers (2020-09-17T07:39:52Z) - Efficient Deep Learning of Non-local Features for Hyperspectral Image
Classification [28.72648031677868]
A deep fully convolutional network (FCN) with an efficient non-local module, named ENL-FCN, is proposed for hyperspectral image (HSI) classification.
The proposed framework, a deep FCN considers an entire HSI as input and extracts spectral-spatial information in a local receptive field.
By using a recurrent operation, each pixel's response is aggregated from all pixels of HSI.
arXiv Detail & Related papers (2020-08-02T19:13:22Z) - Unsupervised Deep Representation Learning and Few-Shot Classification of
PolSAR Images [16.594052017558223]
This paper proposes a PolSAR-tailored contrastive learning network (PCLNet) for unsupervised deep representation learning and few-shot classification.
PCLNet develops an unsupervised pre-training phase based on the proxy objective of instance discrimination to learn useful representations from unlabeled PolSAR data.
Experiments on two widely-used PolSAR benchmark datasets confirm the validity of PCLNet.
arXiv Detail & Related papers (2020-06-27T12:15:32Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.