論文の概要: Beyond the Known: Novel Class Discovery for Open-world Graph Learning
- arxiv url: http://arxiv.org/abs/2403.19907v1
- Date: Fri, 29 Mar 2024 01:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 16:44:26.698662
- Title: Beyond the Known: Novel Class Discovery for Open-world Graph Learning
- Title(参考訳): Beyond the Known: オープンワールドグラフ学習のための新しいクラスディスカバリ
- Authors: Yucheng Jin, Yun Xiong, Juncheng Fang, Xixi Wu, Dongxiao He, Xing Jia, Bingchen Zhao, Philip Yu,
- Abstract要約: 我々は,グラフ上の新しいクラス発見に取り組むために,オープンワールドのgRAph neuraLネットワーク(ORAL)を提案する。
ORALは、半教師付きプロトタイプ学習により、クラス間の相関を初めて検出する。
ラベル欠陥を緩和するためのマルチスケールグラフ機能を完全に探索するため、ORALは擬似ラベルを生成する。
- 参考スコア(独自算出の注目度): 16.30962452905747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Node classification on graphs is of great importance in many applications. Due to the limited labeling capability and evolution in real-world open scenarios, novel classes can emerge on unlabeled testing nodes. However, little attention has been paid to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated by edges, which makes their representations indistinguishable when applying message passing GNNs. Furthermore, the novel classes lack labeling information to guide the learning process. In this paper, we propose a novel method Open-world gRAph neuraL network (ORAL) to tackle these challenges. ORAL first detects correlations between classes through semi-supervised prototypical learning. Inter-class correlations are subsequently eliminated by the prototypical attention network, leading to distinctive representations for different classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the effectiveness of our proposed method.
- Abstract(参考訳): グラフ上のノード分類は多くのアプリケーションにおいて非常に重要である。
実世界のオープンシナリオにおけるラベリング能力の制限と進化により、未ラベルのテストノードに新しいクラスが出現する可能性がある。
しかし、グラフ上の新しいクラス発見にはほとんど注意が払われていない。
新しいクラスを発見することは、新しいクラスノードと既知のクラスノードがエッジによって相関しているため、メッセージパッシングGNNを適用する際にそれらの表現を区別できない。
さらに,新しい授業では学習過程をガイドするラベル情報がない。
本稿では,これらの課題に対処するためのオープンワールドgRAph neuraLネットワーク(ORAL)を提案する。
ORALは、半教師付きプロトタイプ学習により、クラス間の相関を初めて検出する。
クラス間相関は、その後、原型的注意ネットワークによって排除され、異なるクラスに対する独特な表現をもたらす。
さらに,ラベル不足を緩和するためのマルチスケールグラフ機能について検討するために,複数のスタック化されたプロトタイプアテンションネットワークからラベル推定を調整・アンサンブルすることで,擬似ラベルを生成する。
いくつかのベンチマークデータセットに対する大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- Open-World Semi-Supervised Learning for Node Classification [53.07866559269709]
ノード分類のためのオープンワールド半教師付き学習(Open World SSL)は、グラフコミュニティにおいて実用的だが未探索の課題である。
オープンワールド半教師付きノード分類のためのIM Balance-AwareメソッドOpenIMAを提案する。
論文 参考訳(メタデータ) (2024-03-18T05:12:54Z) - LOSS-GAT: Label Propagation and One-Class Semi-Supervised Graph
Attention Network for Fake News Detection [2.6396287656676725]
Loss-GATは、フェイクニュース検出のための半教師付き一級アプローチである。
我々は、ニュースを関心(フェイク)と非関心(リアル)の2つのグループに分類するために、2段階のラベル伝搬アルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-02-13T12:02:37Z) - KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot
Node Classification [75.95647590619929]
Zero-Shot Node Classification (ZNC)は、グラフデータ分析において、新しく重要なタスクである。
ラベルセマンティクスの豊かさを向上する知識認識型多面的フレームワーク(KMF)を提案する。
ノード情報集約によるプロトタイプドリフトの問題を軽減するために,新しい幾何学的制約を開発した。
論文 参考訳(メタデータ) (2023-08-15T02:38:08Z) - Towards Semi-supervised Universal Graph Classification [6.339931887475018]
半教師付き普遍グラフ分類の問題について検討する。
ラベルの不足と潜在的なクラスシフトのため、この問題は難しい。
サブグラフの観点からラベル付けされていないデータを最大限に活用する新しいグラフニューラルネットワークフレームワークUGNNを提案する。
論文 参考訳(メタデータ) (2023-05-31T06:58:34Z) - Transductive Linear Probing: A Novel Framework for Few-Shot Node
Classification [56.17097897754628]
自己教師付きグラフと対照的な事前学習による帰納的線形探索は、同じプロトコル下での最先端の完全教師付きメタラーニング手法より優れていることを示す。
この研究が、数ショットのノード分類問題に新たな光を当て、グラフ上のわずかにラベル付けされたインスタンスから学ぶことの今後の研究を促進することを願っている。
論文 参考訳(メタデータ) (2022-12-11T21:10:34Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) 設定は、既知のクラスや新しいクラスから来るラベルなしのトレーニングデータを分類することを目的としている。
本稿では,この課題に対処するために,PromptCALと呼ばれる補助視覚プロンプトを用いたコントラスト親和性学習法を提案する。
提案手法は,クラストークンと視覚的プロンプトのための既知のクラスと新しいクラスのセマンティッククラスタリングを改善するために,信頼性の高いペアワイズサンプル親和性を発見する。
論文 参考訳(メタデータ) (2022-12-11T20:06:14Z) - Geometer: Graph Few-Shot Class-Incremental Learning via Prototype
Representation [50.772432242082914]
既存のグラフニューラルネットワークに基づく手法は主に、豊富なラベリングを持つ固定クラス内の未ラベルノードの分類に重点を置いている。
本稿では,この難易度で実用的なグラフ数ショットクラスインクリメンタルラーニング(GFSCIL)問題に着目し,Geometerと呼ばれる新しい手法を提案する。
完全に接続されたニューラルネットワークのクラスを置き換えて再トレーニングする代わりに、Geometerは、最も近いクラスのプロトタイプを見つけることによって、ノードのラベルを予測する。
論文 参考訳(メタデータ) (2022-05-27T13:02:07Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
グラフニューラルネットワーク (GNN) におけるショットグラフ分類の問題について, 限定ラベル付きグラフの場合, 未確認のクラスを認識するために検討した。
グラフ正規化ラプラシアンのスペクトルに基づいて確率測度を各グラフに割り当てる手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T17:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。