Multi-task Magnetic Resonance Imaging Reconstruction using Meta-learning
- URL: http://arxiv.org/abs/2403.19966v2
- Date: Sun, 21 Apr 2024 20:16:41 GMT
- Title: Multi-task Magnetic Resonance Imaging Reconstruction using Meta-learning
- Authors: Wanyu Bian, Albert Jang, Fang Liu,
- Abstract summary: This paper proposes a meta-learning approach to efficiently learn image features from multiple MR image datasets.
Experiment results demonstrate the ability of our new meta-learning reconstruction method to successfully reconstruct highly-undersampled k-space data from multiple MRI datasets simultaneously.
- Score: 3.083408283778178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using single-task deep learning methods to reconstruct Magnetic Resonance Imaging (MRI) data acquired with different imaging sequences is inherently challenging. The trained deep learning model typically lacks generalizability, and the dissimilarity among image datasets with different types of contrast leads to suboptimal learning performance. This paper proposes a meta-learning approach to efficiently learn image features from multiple MR image datasets. Our algorithm can perform multi-task learning to simultaneously reconstruct MR images acquired using different imaging sequences with different image contrasts. The experiment results demonstrate the ability of our new meta-learning reconstruction method to successfully reconstruct highly-undersampled k-space data from multiple MRI datasets simultaneously, outperforming other compelling reconstruction methods previously developed for single-task learning.
Related papers
- Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
We build a joint edge optimization model that not only incorporates individual regularizers specific to both the MR image and the edges, but also enforces a co-regularizer to effectively establish a stronger correlation between them.
Specifically, the edge information is defined through a non-edge probability map to guide the image reconstruction during the optimization process.
Meanwhile, the regularizers pertaining to images and edges are incorporated into a deep unfolding network to automatically learn their respective inherent a-priori information.
arXiv Detail & Related papers (2024-05-09T05:51:33Z) - Deep Unfolding Convolutional Dictionary Model for Multi-Contrast MRI
Super-resolution and Reconstruction [23.779641808300596]
We propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm.
We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model.
Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods.
arXiv Detail & Related papers (2023-09-03T13:18:59Z) - Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot
Self-Supervised Learning Reconstruction [7.347468593124183]
We introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI)
This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques.
It achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.
arXiv Detail & Related papers (2023-08-09T17:54:56Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.