DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data
- URL: http://arxiv.org/abs/2403.19996v1
- Date: Fri, 29 Mar 2024 06:24:07 GMT
- Title: DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data
- Authors: Muhammad Sakib Khan Inan, Kewen Liao, Haifeng Shen, Prem Prakash Jayaraman, Dimitrios Georgakopoulos, Ming Jian Tang,
- Abstract summary: We propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively.
In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets.
- Score: 9.531834233076934
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Internet of Things (IoT) sensor data or readings evince variations in timestamp range, sampling frequency, geographical location, unit of measurement, etc. Such presented sequence data heterogeneity makes it difficult for traditional time series classification algorithms to perform well. Therefore, addressing the heterogeneity challenge demands learning not only the sub-patterns (local features) but also the overall pattern (global feature). To address the challenge of classifying heterogeneous IoT sensor data (e.g., categorizing sensor data types like temperature and humidity), we propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively, in an end-to-end manner. Through rigorous experimentation on heterogeneous IoT sensor datasets, we validate the effectiveness of our proposed model, which outperforms recent state-of-the-art classification methods as well as several machine learning and deep learning baselines. In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets
Related papers
- Global-Local Progressive Integration Network for Blind Image Quality Assessment [6.095342999639137]
Vision transformers (ViTs) excel in computer vision for modeling long-term dependencies, yet face two key challenges for image quality assessment (IQA)
We propose a Global-Local progressive INTegration network for IQA, called GlintIQA, to address these issues through three key components.
arXiv Detail & Related papers (2024-08-07T16:34:32Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Understanding learning from EEG data: Combining machine learning and
feature engineering based on hidden Markov models and mixed models [0.0]
Frontal theta oscillations are thought to play an important role in spatial navigation and memory.
EEG datasets are very complex, making changes in the neural signal related to behaviour difficult to interpret.
This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data.
arXiv Detail & Related papers (2023-11-14T12:24:12Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Model is a scalable data engine for object detection.
DiffusionEngine (DE) provides high-quality detection-oriented training pairs in a single stage.
arXiv Detail & Related papers (2023-09-07T17:55:01Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Shared Manifold Learning Using a Triplet Network for Multiple Sensor
Translation and Fusion with Missing Data [2.452410403088629]
We propose a Contrastive learning based MultiModal Alignment Network (CoMMANet) to align data from different sensors into a shared and discriminative manifold.
The proposed architecture uses a multimodal triplet autoencoder to cluster the latent space in such a way that samples of the same classes from each heterogeneous modality are mapped close to each other.
arXiv Detail & Related papers (2022-10-25T20:22:09Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
We present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices.
Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset.
arXiv Detail & Related papers (2020-12-14T21:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.