Grounding and Enhancing Grid-based Models for Neural Fields
- URL: http://arxiv.org/abs/2403.20002v3
- Date: Fri, 7 Jun 2024 00:49:43 GMT
- Title: Grounding and Enhancing Grid-based Models for Neural Fields
- Authors: Zelin Zhao, Fenglei Fan, Wenlong Liao, Junchi Yan,
- Abstract summary: This paper introduces a theoretical framework for grid-based models.
The framework points out that these models' approximation and generalization behaviors are determined by grid tangent kernels (GTK)
The introduced framework motivates the development of a novel grid-based model named the Multiplicative Fourier Adaptive Grid (MulFAGrid)
- Score: 52.608051828300106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many contemporary studies utilize grid-based models for neural field representation, but a systematic analysis of grid-based models is still missing, hindering the improvement of those models. Therefore, this paper introduces a theoretical framework for grid-based models. This framework points out that these models' approximation and generalization behaviors are determined by grid tangent kernels (GTK), which are intrinsic properties of grid-based models. The proposed framework facilitates a consistent and systematic analysis of diverse grid-based models. Furthermore, the introduced framework motivates the development of a novel grid-based model named the Multiplicative Fourier Adaptive Grid (MulFAGrid). The numerical analysis demonstrates that MulFAGrid exhibits a lower generalization bound than its predecessors, indicating its robust generalization performance. Empirical studies reveal that MulFAGrid achieves state-of-the-art performance in various tasks, including 2D image fitting, 3D signed distance field (SDF) reconstruction, and novel view synthesis, demonstrating superior representation ability. The project website is available at https://sites.google.com/view/cvpr24-2034-submission/home.
Related papers
- Best of Both Worlds: Advantages of Hybrid Graph Sequence Models [20.564009321626198]
We present a unifying framework for adopting graph sequence models for learning on graphs.
We evaluate the representation power of Transformers and modern recurrent models through the lens of global and local graph tasks.
We present GSM++, a fast hybrid model that uses the Hierarchical Affinity Clustering (HAC) algorithm to tokenize the graph into hierarchical sequences.
arXiv Detail & Related papers (2024-11-23T23:24:42Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - On the Role of Edge Dependency in Graph Generative Models [28.203109773986167]
We introduce a novel evaluation framework for generative models of graphs.
We focus on the importance of model-generated graph overlap to ensure both accuracy and edge-diversity.
Our results indicate that our simple, interpretable models provide competitive baselines to popular generative models.
arXiv Detail & Related papers (2023-12-06T18:54:27Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
We propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks.
Our proposed model consists of a graph convolutional network (GCN) encoder and a decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture.
Experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks.
arXiv Detail & Related papers (2021-06-22T12:41:19Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
We cast the study of deep neural networks under a unifying framework.
Our framework provides insights on the inductive biases of each model.
The efficacy of the proposed models is evaluated on standard image and audio classification benchmarks.
arXiv Detail & Related papers (2021-04-16T06:41:20Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
Generative models have proven effective at modeling 3D shapes and their statistical variations.
We introduce a latent variable model that builds on normalizing flows to generate 3D point clouds of an arbitrary size.
For single-view shape reconstruction we also obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.
arXiv Detail & Related papers (2020-07-20T14:48:00Z) - Principal Neighbourhood Aggregation for Graph Nets [4.339839287869653]
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data.
Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces.
We extend this theoretical framework to include continuous features which occur regularly in real-world input domains.
arXiv Detail & Related papers (2020-04-12T23:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.