Gate generation for open quantum systems via a monotonic algorithm with time optimization
- URL: http://arxiv.org/abs/2403.20028v1
- Date: Fri, 29 Mar 2024 07:43:29 GMT
- Title: Gate generation for open quantum systems via a monotonic algorithm with time optimization
- Authors: Paulo Sergio Pereira da Silva, Pierre Rouchon,
- Abstract summary: We present a monotonic numerical algorithm for generating quantum gates for open systems.
Preliminary implementations indicate that this algorithm is well suited for cat-qubit gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a monotonic numerical algorithm including time optimization for generating quantum gates for open systems. Such systems are assumed to be governed by Lindblad master equations for the density operators on a large Hilbert-space whereas the quantum gates are relative to a sub-space of small dimension. Starting from an initial seed of the control input, this algorithm consists in the repetition of the following two steps producing a new control input: (A) backwards integration of adjoint Lindblad-Master equations (in the Heisenberg-picture) from a set of final conditions encoding the quantum gate to generate; (B) forward integration of Lindblad-Master equations in closed-loop where a Lyapunov based control produced the new control input. The numerical stability is ensured by the stability of both the open-loop adjoint backward system and the forward closed-loop system. A clock-control input can be added to the usual control input. The obtained monotonic algorithm allows then to optimise not only the shape of the control imput, but also the gate time. Preliminary numerical implementations indicate that this algorithm is well suited for cat-qubit gates, where Hilbert-space dimensions (2 for the Z-gate and 4 for the CNOT-gate) are much smaller than the dimension of the physical Hilbert-space involving mainly Fock-states (typically 20 or larger for a single cat-qubit). This monotonic algorithm, based on Lyapunov control techniques, is shown to have a straightforward interpretation in terms of optimal control: its stationary conditions coincides with the first-order optimality conditions for a cost depending linearly on the final values of the quantum states.
Related papers
- GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Efficient multi-qubit subspace rotations via topological quantum walks [1.0486921990935787]
The rotation of subspaces by a chosen angle is a fundamental quantum computing operation.
We propose a fast, high-fidelity way to implement such operations via topological quantum walks.
This procedure can be implemented in superconducting qubits, ion-traps and Rydberg atoms with star-type connectivity.
arXiv Detail & Related papers (2021-11-12T02:10:56Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
arXiv Detail & Related papers (2020-07-14T04:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.