2D Qubit Placement of Quantum Circuits using LONGPATH
- URL: http://arxiv.org/abs/2007.06804v1
- Date: Tue, 14 Jul 2020 04:09:52 GMT
- Title: 2D Qubit Placement of Quantum Circuits using LONGPATH
- Authors: Mrityunjay Ghosh, Nivedita Dey, Debdeep Mitra, Amlan Chakrabarti
- Abstract summary: Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
- Score: 1.6631602844999722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to achieve speedup over conventional classical computing for finding
solution of computationally hard problems, quantum computing was introduced.
Quantum algorithms can be simulated in a pseudo quantum environment, but
implementation involves realization of quantum circuits through physical
synthesis of quantum gates. This requires decomposition of complex quantum
gates into a cascade of simple one qubit and two qubit gates. The
methodological framework for physical synthesis imposes a constraint regarding
placement of operands (qubits) and operators. If physical qubits can be placed
on a grid, where each node of the grid represents a qubit then quantum gates
can only be operated on adjacent qubits, otherwise SWAP gates must be inserted
to convert non-Linear Nearest Neighbor architecture to Linear Nearest Neighbor
architecture. Insertion of SWAP gates should be made optimal to reduce
cumulative cost of physical implementation. A schedule layout generation is
required for placement and routing apriori to actual implementation. In this
paper, two algorithms are proposed to optimize the number of SWAP gates in any
arbitrary quantum circuit. The first algorithm is intended to start with
generation of an interaction graph followed by finding the longest path
starting from the node with maximum degree. The second algorithm optimizes the
number of SWAP gates between any pair of non-neighbouring qubits. Our proposed
approach has a significant reduction in number of SWAP gates in 1D and 2D NTC
architecture.
Related papers
- SWAP-less Implementation of Quantum Algorithms [0.0]
We present a formalism based on tracking the flow of parity quantum information to implement algorithms on devices with limited connectivity.
We leverage the fact that entangling gates not only manipulate quantum states but can also be exploited to transport quantum information.
arXiv Detail & Related papers (2024-08-20T14:51:00Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Moving Quantum States without SWAP via Intermediate Higher Dimensional
Qudits [3.5450828190071646]
This paper introduces a new formalism of moving quantum states without using SWAP operation.
Moving quantum states through qubits have been attained with the adoption of temporary intermediate qudit states.
arXiv Detail & Related papers (2021-06-16T19:21:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.