Controlling the dynamics of atomic correlations via the coupling to a dissipative cavity
- URL: http://arxiv.org/abs/2403.20096v2
- Date: Thu, 5 Sep 2024 14:49:55 GMT
- Title: Controlling the dynamics of atomic correlations via the coupling to a dissipative cavity
- Authors: Catalin-Mihai Halati, Ameneh Sheikhan, Giovanna Morigi, Corinna Kollath,
- Abstract summary: We analyze the relaxation dynamics in an open system composed by a quantum gas of bosons in a lattice interacting via both contact and global interactions.
We report the onset of periodic oscillations of the atomic coherences exhibiting hallmarks of synchronization after a quantum quench.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the relaxation dynamics in an open system, composed by a quantum gas of bosons in a lattice interacting via both contact and global interactions. We report the onset of periodic oscillations of the atomic coherences exhibiting hallmarks of synchronization after a quantum quench. The dynamical behavior exhibits the many-body collapse and revival of atomic coherences and emerges from the interplay of the quantum dissipative nature of the cavity field and the presence of a (approximate) strong symmetry in the dissipative system. We further show that the approximate symmetry can dynamically self-organize. We argue that the approximate symmetry can be tailored to obtain long-lived coherences. These insights provide a general recipe to engineer the dynamics of globally-interacting systems.
Related papers
- System Symmetry and the Classification of Out-of-Time-Ordered Correlator Dynamics in Quantum Chaos [1.534667887016089]
We study the universality of out-of-time-ordered correlator (OTOC) dynamics in quantum chaotic systems.
We show that ensemble-averaged OTOC dynamics exhibit distinct universal behaviors depending on system symmetry.
arXiv Detail & Related papers (2024-10-07T03:03:09Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Quantum chaos in interacting Bose-Bose mixtures [0.0]
We study the emergence of quantum chaos in a minimal system describing one-dimensional harmonically trapped Bose-Bose mixtures.
We show that one can obtain strong signatures of chaos by increasing the inter-component interaction strength and breaking the symmetry of intra-component interactions.
arXiv Detail & Related papers (2023-01-12T05:26:12Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a
Quantum Quench in a Driven-Dissipative Kitaev Chain [0.0]
We show that relaxation of driven-dissipative systems after a quantum quench can be determined by a maximum entropy ensemble.
We show that these results apply to broad classes of noninteracting fermionic models.
arXiv Detail & Related papers (2022-03-28T08:59:58Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.