Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets
- URL: http://arxiv.org/abs/2403.20149v1
- Date: Fri, 29 Mar 2024 12:34:57 GMT
- Title: Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets
- Authors: Yvet Renkema, Nico Brinkel, Tarek Alskaif,
- Abstract summary: conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies the use of conformal prediction (CP), an emerging probabilistic forecasting method, for day-ahead photovoltaic power predictions to enhance participation in electricity markets. First, machine learning models are used to construct point predictions. Thereafter, several variants of CP are implemented to quantify the uncertainty of those predictions by creating CP intervals and cumulative distribution functions. Optimal quantity bids for the electricity market are estimated using several bidding strategies under uncertainty, namely: trust-the-forecast, worst-case, Newsvendor and expected utility maximization (EUM). Results show that CP in combination with k-nearest neighbors and/or Mondrian binning outperforms its corresponding linear quantile regressors. Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance. In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit and imbalance regardless of the decision-making strategy. Combining this uncertainty quantification method with the EUM strategy with conditional value at risk (CVaR) can yield up to 93\% of the potential profit with minimal energy imbalance.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
We examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones.
We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the predictive distributions.
Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets.
arXiv Detail & Related papers (2024-04-02T19:50:36Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
We study whether using CRPS learning, a novel weighting technique, leads to optimal decisions in day-ahead bidding.
We find that increasing the diversity of an ensemble can have a positive impact on accuracy.
The higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits.
arXiv Detail & Related papers (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Electricity Price Prediction for Energy Storage System Arbitrage: A
Decision-focused Approach [4.992622806418143]
Electricity price prediction plays a vital role in energy storage system (ESS) management.
Current prediction models focus on reducing prediction errors but overlook their impact on downstream decision-making.
This paper proposes a decision-focused electricity price prediction approach for ESS arbitrage to bridge the gap from the downstream optimization model to the prediction model.
arXiv Detail & Related papers (2023-04-30T00:43:26Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.111899441919165]
Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference.
We find that our method dominates existing machine learning models statistically and economically.
It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
arXiv Detail & Related papers (2022-12-02T09:37:29Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation
in the Capacity Firming Market [30.828362290032935]
This paper addresses the energy management of a grid-connected renewable generation plant and a battery energy storage device in the capacity firming market.
A recently developed deep learning model known as normalizing flows is used to generate quantile forecasts of renewable generation.
arXiv Detail & Related papers (2021-05-28T13:13:07Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.