Electricity Price Prediction for Energy Storage System Arbitrage: A
Decision-focused Approach
- URL: http://arxiv.org/abs/2305.00362v1
- Date: Sun, 30 Apr 2023 00:43:26 GMT
- Title: Electricity Price Prediction for Energy Storage System Arbitrage: A
Decision-focused Approach
- Authors: Linwei Sang, Yinliang Xu, Huan Long, Qinran Hu, Hongbin Sun
- Abstract summary: Electricity price prediction plays a vital role in energy storage system (ESS) management.
Current prediction models focus on reducing prediction errors but overlook their impact on downstream decision-making.
This paper proposes a decision-focused electricity price prediction approach for ESS arbitrage to bridge the gap from the downstream optimization model to the prediction model.
- Score: 4.992622806418143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity price prediction plays a vital role in energy storage system
(ESS) management. Current prediction models focus on reducing prediction errors
but overlook their impact on downstream decision-making. So this paper proposes
a decision-focused electricity price prediction approach for ESS arbitrage to
bridge the gap from the downstream optimization model to the prediction model.
The decision-focused approach aims at utilizing the downstream arbitrage model
for training prediction models. It measures the difference between actual
decisions under the predicted price and oracle decisions under the true price,
i.e., decision error, by regret, transforms it into the tractable surrogate
regret, and then derives the gradients to predicted price for training
prediction models. Based on the prediction and decision errors, this paper
proposes the hybrid loss and corresponding stochastic gradient descent learning
method to learn prediction models for prediction and decision accuracy. The
case study verifies that the proposed approach can efficiently bring more
economic benefits and reduce decision errors by flattening the time
distribution of prediction errors, compared to prediction models for only
minimizing prediction errors.
Related papers
- Microfoundation Inference for Strategic Prediction [26.277259491014163]
We propose a methodology for learning the distribution map that encapsulates the long-term impacts of predictive models on the population.
Specifically, we model agents' responses as a cost-utility problem and propose estimates for said cost.
We provide a rate of convergence for this proposed estimate and assess its quality through empirical demonstrations on a credit-scoring dataset.
arXiv Detail & Related papers (2024-11-13T19:37:49Z) - Price predictability in limit order book with deep learning model [0.0]
This study explores the prediction of high-frequency price changes using deep learning models.
We found that an inadequately defined target price process may render predictions meaningless by incorporating past information.
arXiv Detail & Related papers (2024-09-21T14:40:13Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
arXiv Detail & Related papers (2024-03-29T12:34:57Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
We study whether using CRPS learning, a novel weighting technique, leads to optimal decisions in day-ahead bidding.
We find that increasing the diversity of an ensemble can have a positive impact on accuracy.
The higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits.
arXiv Detail & Related papers (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
We propose to embed electricity market-clearing optimization as a deep learning layer.
Differentiating through this layer allows for balancing between prediction and pricing errors.
We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
arXiv Detail & Related papers (2023-08-02T21:16:05Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Leveraging Predictions in Smoothed Online Convex Optimization via
Gradient-based Algorithms [18.64335888217192]
We consider online convex optimization with time-varying stage costs and additional switching costs.
Since the switching costs introduce coupling across all stages, long-term predictions tend to suffer from lower quality.
We introduce a gradient-based online algorithm, Receding Horizon Inexact Gradient (RHIG), and analyze its performance by dynamic regrets.
arXiv Detail & Related papers (2020-11-25T06:25:51Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.