A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles
- URL: http://arxiv.org/abs/2403.20151v2
- Date: Thu, 9 May 2024 08:49:43 GMT
- Title: A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles
- Authors: Jiani Fan, Minrui Xu, Ziyao Liu, Huanyi Ye, Chaojie Gu, Dusit Niyato, Kwok-Yan Lam,
- Abstract summary: We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
- Score: 49.86094523878003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence-Generated Content (AIGC) refers to the paradigm of automated content generation utilizing AI models. Mobile AIGC services in the Internet of Vehicles (IoV) network have numerous advantages over traditional cloud-based AIGC services, including enhanced network efficiency, better reconfigurability, and stronger data security and privacy. Nonetheless, AIGC service provisioning frequently demands significant resources. Consequently, resource-constrained roadside units (RSUs) face challenges in maintaining a heterogeneous pool of AIGC services and addressing all user service requests without degrading overall performance. Therefore, in this paper, we propose a decentralized incentive mechanism for mobile AIGC service allocation, employing multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context, optimizing user experience and minimizing transmission latency. Experimental results demonstrate that our approach achieves superior performance compared to other baseline models.
Related papers
- Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication [53.78269720999609]
This paper proposes a semantic communication (SemCom)-empowered AIGC (SemAIGC) generation and transmission framework.
Specifically, SemAIGC integrates diffusion models within the semantic encoder and decoder to design a workload-adjustable transceiver.
Simulations verify the superiority of our proposed SemAIGC framework in terms of latency and content quality compared to conventional approaches.
arXiv Detail & Related papers (2023-10-26T18:05:22Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
We propose a novel layer-based HetNet architecture which distributes tasks associated with different machine learning approaches across network layers and entities.
Such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency.
arXiv Detail & Related papers (2022-06-04T22:03:19Z) - An Explainable Artificial Intelligence Framework for Quality-Aware IoE
Service Delivery [17.146527100570285]
This paper provides an explainable artificial intelligence (XAI) framework for quality-aware IoE service delivery.
The XAI-enabled quality-aware IoE service delivery algorithm is implemented by employing ensemble-based regression models.
Experiment results show that the uplink improvement rate becomes 42.43% and 16.32% for the AdaBoost and Extra Trees, respectively.
arXiv Detail & Related papers (2022-01-26T08:59:00Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
Artificial intelligence (AI) assisted unmanned aerial vehicle (UAV) aided next-generation networking is proposed for dynamic environments.
In the AI-enabled UAV-aided wireless networks (UAWN), multiple UAVs are employed as aerial base stations, which are capable of rapidly adapting to the dynamic environment.
As a benefit of the AI framework, several challenges of conventional UAWN may be circumvented, leading to enhanced network performance, improved reliability and agile adaptivity.
arXiv Detail & Related papers (2020-01-28T15:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.