Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2012.15548v1
- Date: Thu, 31 Dec 2020 11:19:51 GMT
- Title: Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning
- Authors: George Stamatakis, Nikolaos Pappas, Alexandros Fragkiadakis, Apostolos
Traganitis
- Abstract summary: Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
- Score: 73.85267769520715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of Things (IoT) with its growing number of deployed devices and
applications raises significant challenges for network maintenance procedures.
In this work, we formulate a problem of autonomous maintenance in IoT networks
as a Partially Observable Markov Decision Process. Subsequently, we utilize
Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a
maintenance procedure is in order or not and, in the former case, the proper
type of maintenance needed. To avoid wasting the scarce resources of IoT
networks we utilize the Age of Information (AoI) metric as a reward signal for
the training of the smart agents. AoI captures the freshness of the sensory
data which are transmitted by the IoT sensors as part of their normal service
provision. Numerical results indicate that AoI integrates enough information
about the past and present states of the system to be successfully used in the
training of smart agents for the autonomous maintenance of the network.
Related papers
- A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Digital Twin-Native AI-Driven Service Architecture for Industrial
Networks [2.2924151077053407]
We propose a DT-native AI-driven service architecture in support of the concept of IoT networks.
Within the proposed DT-native architecture, we implement a TCP-based data flow pipeline and a Reinforcement Learning (RL)-based learner model.
arXiv Detail & Related papers (2023-11-24T14:56:13Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
This article surveys research studies that use AI as part of the data offloading process, categorized based on four main issues: reliability, security, energy management, and service seller profit.
Various challenges to the process of offloading data in a MEC-enabled IoV network have emerged, such as offloading reliability in highly mobile environments, security for users within the same network, and energy management to keep users from being disincentivized to participate in the network.
arXiv Detail & Related papers (2022-03-31T09:31:53Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management.
The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
arXiv Detail & Related papers (2021-03-18T14:18:34Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.