論文の概要: NeuraLunaDTNet: Feedforward Neural Network-Based Routing Protocol for Delay-Tolerant Lunar Communication Networks
- arxiv url: http://arxiv.org/abs/2403.20199v2
- Date: Sun, 7 Apr 2024 08:40:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 00:16:23.888467
- Title: NeuraLunaDTNet: Feedforward Neural Network-Based Routing Protocol for Delay-Tolerant Lunar Communication Networks
- Title(参考訳): NeuraLunaDTNet:遅延耐性ルナー通信のためのフィードフォワードニューラルネットワークベースのルーティングプロトコル
- Authors: Parth Patel, Milena Radenkovic,
- Abstract要約: 宇宙は、厳しい遅延、予測の難しいルート、通信の中断といった課題を引き起こす。
従来のDTNルーティングプロトコルは、空間通信の本質的な複雑さのため、最適なパフォーマンスを提供できない。
本稿では,月面通信の効率を高める新しいプロトコルであるNeuraLunaDTNetを開発するために,フィードフォワードニューラルネットワークの利用を提案する。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Space Communication poses challenges such as severe delays, hard-to-predict routes and communication disruptions. The Delay Tolerant Network architecture, having been specifically designed keeping such scenarios in mind, is suitable to address some challenges. The traditional DTN routing protocols fall short of delivering optimal performance, due to the inherent complexities of space communication. Researchers have aimed at using recent advancements in AI to mitigate some routing challenges [9]. We propose utilising a feedforward neural network to develop a novel protocol NeuraLunaDTNet, which enhances the efficiency of the PRoPHET routing protocol for lunar communication, by learning contact plans in dynamically changing spatio-temporal graph.
- Abstract(参考訳): 宇宙通信は、重大な遅延、予測の難しい経路、通信障害などの課題を提起する。
遅延耐性ネットワークアーキテクチャは、そのようなシナリオを念頭に置いて特別に設計されており、いくつかの課題に対処するのに適しています。
従来のDTNルーティングプロトコルは、空間通信の本質的な複雑さのため、最適なパフォーマンスを提供できない。
研究者は、最近のAIの進歩を使ってルーティングの課題を軽減することを目指している[9]。
動的に変化する時空間グラフにおける接触計画の学習により,月面通信のためのPRoPHETルーティングプロトコルの効率を向上させる新しいプロトコルであるNeuraLunaDTNetを開発するために,フィードフォワードニューラルネットワークの利用を提案する。
関連論文リスト
- Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks [0.0]
本稿では,星座とCPを動的ネットワークとしてモデル化し,その課題を克服する新しい手法を提案する。
トレーニングされたニューラルネットワークは、平均絶対誤差3.6分でネットワーク遅延を予測することができる。
シミュレーションの結果,提案手法は大型衛星ネットワークの接触計画の設計に成功し,従来のアプローチと同様,遅延率を29.1%向上させることができた。
論文 参考訳(メタデータ) (2024-03-01T17:26:02Z) - Dynamic Routing for Integrated Satellite-Terrestrial Networks: A
Constrained Multi-Agent Reinforcement Learning Approach [41.714453335170404]
地上局と衛星が共同でパケットを送信するためのパケットルーティングについて検討する。
CMADRと呼ばれる新しい制約付きマルチエージェント強化学習(MARL)動的ルーティングアルゴリズムを提案する。
その結果、CMADRはパケット遅延を最小21%と15%削減し、一方、厳しいエネルギー消費とパケット損失率の制約を満たし、いくつかのベースラインアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-12-23T03:36:35Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
エンド・ツー・エンド(E2E)遅延の最小化を目的としたAANETにおけるルーティングのための深層強化学習を起動する。
最深Qネットワーク(DQN)は、転送ノードで観測される最適ルーティング決定と局所的な地理的情報との関係をキャプチャする。
フィードバック機構を組み込んだディープバリューネットワーク(DVN)を用いて,システムのダイナミクスに関する知識をさらに活用する。
論文 参考訳(メタデータ) (2021-10-28T14:18:56Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
航空アドホックネットワーク(AANET)のルーティングを支援するために、ディープラーニング(DL)を起動する。
フォワードノードによって観測された局所的な地理的情報を最適な次のホップを決定するために必要な情報にマッピングするために、ディープニューラルネットワーク(DNN)が考案される。
DL支援ルーティングアルゴリズムを多目的シナリオに拡張し,遅延を最小化し,経路容量を最大化し,経路寿命を最大化する。
論文 参考訳(メタデータ) (2021-10-28T14:18:22Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
我々は強化学習(RL)を利用したモデルフリーでデータ駆動型ルーティング戦略を開発する。
ネットワークトポロジのグラフ特性を考慮すると、グラフニューラルネットワーク(GNN)と組み合わせたマルチエージェントRLフレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-28T06:20:34Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - CARL-DTN: Context Adaptive Reinforcement Learning based Routing
Algorithm in Delay Tolerant Network [0.0]
delay/disruption- tolerance networks (dtn) は、全てのタイプの長距離遅延、断続的、断続的接続ネットワークを記述およびカバーするために発明された。
本研究では,リアルタイム密度に基づくメッセージの最適なレプリカを決定するために,コンテキスト適応型強化学習に基づくルーティングプロトコルを提案する。
論文 参考訳(メタデータ) (2021-05-02T20:08:17Z) - Relational Deep Reinforcement Learning for Routing in Wireless Networks [2.997420836766863]
我々は,トラフィックパターン,混雑レベル,ネットワーク接続性,リンクダイナミクスを一般化した,深層強化学習に基づく分散ルーティング戦略を開発した。
提案アルゴリズムは,パケットの配送やパケット毎の遅延に対して,最短経路とバックプレッシャルーティングに優れる。
論文 参考訳(メタデータ) (2020-12-31T16:28:21Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。