論文の概要: Voice Signal Processing for Machine Learning. The Case of Speaker Isolation
- arxiv url: http://arxiv.org/abs/2403.20202v1
- Date: Fri, 29 Mar 2024 14:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:24:49.816340
- Title: Voice Signal Processing for Machine Learning. The Case of Speaker Isolation
- Title(参考訳): 機械学習のための音声信号処理 -話者分離の場合-
- Authors: Radan Ganchev,
- Abstract要約: 本稿では,音声処理タスクの信号分解手法として最もよく用いられるフーリエ変換とウェーブレット変換の比較解析を行う。
展示の詳細なレベルは、特定のMLモデルの分解方法を選択し、微調整し、評価する際に、MLエンジニアが情報的な決定を下すのに十分である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread use of automated voice assistants along with other recent technological developments have increased the demand for applications that process audio signals and human voice in particular. Voice recognition tasks are typically performed using artificial intelligence and machine learning models. Even though end-to-end models exist, properly pre-processing the signal can greatly reduce the complexity of the task and allow it to be solved with a simpler ML model and fewer computational resources. However, ML engineers who work on such tasks might not have a background in signal processing which is an entirely different area of expertise. The objective of this work is to provide a concise comparative analysis of Fourier and Wavelet transforms that are most commonly used as signal decomposition methods for audio processing tasks. Metrics for evaluating speech intelligibility are also discussed, namely Scale-Invariant Signal-to-Distortion Ratio (SI-SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI). The level of detail in the exposition is meant to be sufficient for an ML engineer to make informed decisions when choosing, fine-tuning, and evaluating a decomposition method for a specific ML model. The exposition contains mathematical definitions of the relevant concepts accompanied with intuitive non-mathematical explanations in order to make the text more accessible to engineers without deep expertise in signal processing. Formal mathematical definitions and proofs of theorems are intentionally omitted in order to keep the text concise.
- Abstract(参考訳): 近年の技術開発とともに、音声アシスタントの自動化が普及し、音声信号や人間の音声を処理するアプリケーションへの需要が高まっている。
音声認識タスクは通常、人工知能と機械学習モデルを使用して実行される。
エンドツーエンドモデルが存在するにもかかわらず、信号の適切な前処理はタスクの複雑さを大幅に減らし、より単純なMLモデルと少ない計算資源で解決することができる。
しかし、そのようなタスクに取り組んでいるMLエンジニアは、全く異なる専門分野である信号処理のバックグラウンドを持っていないかもしれない。
本研究の目的は、音声処理タスクの信号分解手法として最もよく用いられるフーリエ変換とウェーブレット変換の簡潔な比較分析を提供することである。
また,SDR(SI-SDR),PESQ(Perceptual Evaluation of Speech Quality),STOI(Short-Time Objective Intelligibility)についても検討した。
展示の詳細なレベルは、特定のMLモデルの分解方法を選択し、微調整し、評価する際に、MLエンジニアが情報的な決定を下すのに十分である。
この展示は、信号処理の深い専門知識のない技術者にテキストをアクセスできるようにするために、直観的な非数学的説明を伴う関連する概念の数学的定義を含んでいる。
形式的な数学的定義と定理の証明は、テキストの簡潔さを維持するために意図的に省略される。
関連論文リスト
- It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - ML-ASPA: A Contemplation of Machine Learning-based Acoustic Signal
Processing Analysis for Sounds, & Strains Emerging Technology [0.0]
本稿では,機械学習(ML)とディープラーニングに焦点をあてて,音響分野における最近の進歩と変革の可能性を探る。
MLはデータ駆動のアプローチを採用し、機能と望ましいラベルやアクション、さらには機能自体の複雑な関係を明らかにする。
機械学習のトレーニングデータの拡張への応用により、人間の発話や残響のような複雑な音響現象を解明するモデルが発見される。
論文 参考訳(メタデータ) (2023-12-18T03:04:42Z) - EmoDiarize: Speaker Diarization and Emotion Identification from Speech
Signals using Convolutional Neural Networks [0.0]
本研究では,音声認識における深層学習技術の統合について検討する。
既存の話者ダイアリゼーションパイプラインと、畳み込みニューラルネットワーク(CNN)上に構築された感情識別モデルを組み合わせたフレームワークを導入する。
提案モデルでは,63%の非重み付き精度が得られ,音声信号中の感情状態を正確に同定する上で,顕著な効率性を示した。
論文 参考訳(メタデータ) (2023-10-19T16:02:53Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
本稿では,ロバストなエンドツーエンドのセマンティック通信システムにおいて,セマンティックノイズに対処するためのフレームワークを提案する。
セマンティックノイズに対処するため、重み付き対向トレーニングを開発し、トレーニングデータセットにセマンティックノイズを組み込む。
ノイズやタスク非関連の特徴を抑える機能重要モジュール (FIM) を開発した。
論文 参考訳(メタデータ) (2022-06-08T16:58:47Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - Knowledge Transfer from Large-scale Pretrained Language Models to
End-to-end Speech Recognizers [13.372686722688325]
エンドツーエンド音声認識の訓練には、常に書き起こされた発話が必要である。
本稿では,テキストのみのデータで事前学習可能な言語モデルニューラルネットワークから知識を伝達することで,この問題を緩和する手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T07:02:24Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Knowledge Distillation for Improved Accuracy in Spoken Question
Answering [63.72278693825945]
我々は,音声文書や書面文書から知識蒸留を行うための訓練戦略を考案した。
我々の研究は、言語モデルから知識の抽出を監督信号として進めている。
実験により,本手法はSpken-SQuADデータセット上で,最先端の言語モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-21T15:18:01Z) - Learning Patterns in Imaginary Vowels for an Intelligent Brain Computer
Interface (BCI) Design [0.0]
本稿では,脳コンピュータインタフェースシステムにおいて,母音をAI部分として認識するためのモジュラーフレームワークを提案する。
生の脳波信号から英語の母音を識別するモジュールを慎重に設計した。
提案するフレームワークのアルゴリズムは、将来の研究者や、同じワークフローに従いたい開発者にとって容易なものです。
論文 参考訳(メタデータ) (2020-10-17T06:10:10Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。