Psittacines of Innovation? Assessing the True Novelty of AI Creations
- URL: http://arxiv.org/abs/2404.00017v1
- Date: Sun, 17 Mar 2024 13:08:11 GMT
- Title: Psittacines of Innovation? Assessing the True Novelty of AI Creations
- Authors: Anirban Mukherjee,
- Abstract summary: We task an AI with generating project titles for hypothetical crowdfunding campaigns.
We compare within AI-generated project titles, measuring repetition and complexity.
Results suggest that the AI generates unique content even under increasing task complexity.
- Score: 0.26107298043931204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine whether Artificial Intelligence (AI) systems generate truly novel ideas rather than merely regurgitating patterns learned during training. Utilizing a novel experimental design, we task an AI with generating project titles for hypothetical crowdfunding campaigns. We compare within AI-generated project titles, measuring repetition and complexity. We compare between the AI-generated titles and actual observed field data using an extension of maximum mean discrepancy--a metric derived from the application of kernel mean embeddings of statistical distributions to high-dimensional machine learning (large language) embedding vectors--yielding a structured analysis of AI output novelty. Results suggest that (1) the AI generates unique content even under increasing task complexity, and at the limits of its computational capabilities, (2) the generated content has face validity, being consistent with both inputs to other generative AI and in qualitative comparison to field data, and (3) exhibits divergence from field data, mitigating concerns relating to intellectual property rights. We discuss implications for copyright and trademark law.
Related papers
- Validity Arguments For Constructed Response Scoring Using Generative Artificial Intelligence Applications [0.0]
generative AI is particularly appealing because it reduces the effort required for handcrafting features in traditional AI scoring.
We compare the validity evidence needed in scoring systems using human ratings, feature-based natural language processing AI scoring engines, and generative AI.
arXiv Detail & Related papers (2025-01-04T16:59:29Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAI is a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI.
We show that our proposed framework achieves outstanding results in both the Turing Test and Authorship tasks.
arXiv Detail & Related papers (2024-07-12T15:44:56Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
Large language models (LLMs) and generative AI tools present challenges in identifying and addressing biases.
generative AI tools are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts.
We find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias.
arXiv Detail & Related papers (2023-12-04T04:05:04Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.