A Two-Phase Recall-and-Select Framework for Fast Model Selection
- URL: http://arxiv.org/abs/2404.00069v1
- Date: Thu, 28 Mar 2024 14:44:44 GMT
- Title: A Two-Phase Recall-and-Select Framework for Fast Model Selection
- Authors: Jianwei Cui, Wenhang Shi, Honglin Tao, Wei Lu, Xiaoyong Du,
- Abstract summary: We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
- Score: 13.385915962994806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the ubiquity of deep learning in various machine learning applications has amplified, a proliferation of neural network models has been trained and shared on public model repositories. In the context of a targeted machine learning assignment, utilizing an apt source model as a starting point typically outperforms the strategy of training from scratch, particularly with limited training data. Despite the investigation and development of numerous model selection strategies in prior work, the process remains time-consuming, especially given the ever-increasing scale of model repositories. In this paper, we propose a two-phase (coarse-recall and fine-selection) model selection framework, aiming to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets. Specifically, the coarse-recall phase clusters models showcasing similar training performances on benchmark datasets in an offline manner. A light-weight proxy score is subsequently computed between this model cluster and the target dataset, which serves to recall a significantly smaller subset of potential candidate models in a swift manner. In the following fine-selection phase, the final model is chosen by fine-tuning the recalled models on the target dataset with successive halving. To accelerate the process, the final fine-tuning performance of each potential model is predicted by mining the model's convergence trend on the benchmark datasets, which aids in filtering lower performance models more earlier during fine-tuning. Through extensive experimentation on tasks covering natural language processing and computer vision, it has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods. Our code is available at https://github.com/plasware/two-phase-selection.
Related papers
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Towards Fundamentally Scalable Model Selection: Asymptotically Fast Update and Selection [40.85209520973634]
An ideal model selection scheme should support two operations efficiently over a large pool of candidate models.
Previous solutions to model selection require high computational complexity for at least one of these two operations.
We present Standardized Embedder, an empirical realization of isolated model embedding.
arXiv Detail & Related papers (2024-06-11T17:57:49Z) - Budgeted Online Model Selection and Fine-Tuning via Federated Learning [26.823435733330705]
Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data.
The choice of candidate models henceforth has a crucial impact on the performance.
The present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory.
Using the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment.
arXiv Detail & Related papers (2024-01-19T04:02:49Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
Two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples.
We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on.
We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
arXiv Detail & Related papers (2023-09-18T18:11:31Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - MILO: Model-Agnostic Subset Selection Framework for Efficient Model
Training and Tuning [68.12870241637636]
We propose MILO, a model-agnostic subset selection framework that decouples the subset selection from model training.
Our empirical results indicate that MILO can train models $3times - 10 times$ faster and tune hyperparameters $20times - 75 times$ faster than full-dataset training or tuning without performance.
arXiv Detail & Related papers (2023-01-30T20:59:30Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Model Selection, Adaptation, and Combination for Deep Transfer Learning
through Neural Networks in Renewable Energies [5.953831950062808]
We conduct the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast.
We adopt models based on data from different seasons and limit the amount of training data.
We show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach.
arXiv Detail & Related papers (2022-04-28T05:34:50Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
A simple yet powerful approach is to operate on small subsets of data.
In this work, we propose a generic coreset framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem.
arXiv Detail & Related papers (2021-09-26T09:08:38Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
We develop a model-specific data subsampling strategy that improves over random sampling whenever training points have varying influence.
Specifically, we leverage influence functions to guide our selection strategy, proving theoretically, and demonstrating empirically that our approach quickly selects high-quality models.
arXiv Detail & Related papers (2020-10-20T12:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.