Budgeted Online Model Selection and Fine-Tuning via Federated Learning
- URL: http://arxiv.org/abs/2401.10478v1
- Date: Fri, 19 Jan 2024 04:02:49 GMT
- Title: Budgeted Online Model Selection and Fine-Tuning via Federated Learning
- Authors: Pouya M. Ghari, Yanning Shen
- Abstract summary: Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data.
The choice of candidate models henceforth has a crucial impact on the performance.
The present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory.
Using the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment.
- Score: 26.823435733330705
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Online model selection involves selecting a model from a set of candidate
models 'on the fly' to perform prediction on a stream of data. The choice of
candidate models henceforth has a crucial impact on the performance. Although
employing a larger set of candidate models naturally leads to more flexibility
in model selection, this may be infeasible in cases where prediction tasks are
performed on edge devices with limited memory. Faced with this challenge, the
present paper proposes an online federated model selection framework where a
group of learners (clients) interacts with a server with sufficient memory such
that the server stores all candidate models. However, each client only chooses
to store a subset of models that can be fit into its memory and performs its
own prediction task using one of the stored models. Furthermore, employing the
proposed algorithm, clients and the server collaborate to fine-tune models to
adapt them to a non-stationary environment. Theoretical analysis proves that
the proposed algorithm enjoys sub-linear regret with respect to the best model
in hindsight. Experiments on real datasets demonstrate the effectiveness of the
proposed algorithm.
Related papers
- Towards Fundamentally Scalable Model Selection: Asymptotically Fast Update and Selection [40.85209520973634]
An ideal model selection scheme should support two operations efficiently over a large pool of candidate models.
Previous solutions to model selection require high computational complexity for at least one of these two operations.
We present Standardized Embedder, an empirical realization of isolated model embedding.
arXiv Detail & Related papers (2024-06-11T17:57:49Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Tryage: Real-time, intelligent Routing of User Prompts to Large Language
Models [1.0878040851637998]
With over 200, 000 models in the Hugging Face ecosystem, users grapple with selecting and optimizing models to suit multifaceted and data domains.
Here, we propose a context-aware routing system, Tryage, that leverages a language model router for optimal selection of expert models from a model library.
arXiv Detail & Related papers (2023-08-22T17:48:24Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Have we been Naive to Select Machine Learning Models? Noisy Data are
here to Stay! [2.094821665776961]
The model selection procedure is usually a single-criterion decision making in which we select the model that maximizes a specific metric in a specific set.
We claim this is very naive and can perform poor selections of over-fitted models due to the over-searching phenomenon.
We have defined four theoretical optimality conditions that we can pursue to better select the models and analyze them.
arXiv Detail & Related papers (2022-07-14T04:20:08Z) - A linearized framework and a new benchmark for model selection for
fine-tuning [112.20527122513668]
Fine-tuning from a collection of models pre-trained on different domains is emerging as a technique to improve test accuracy in the low-data regime.
We introduce two new baselines for model selection -- Label-Gradient and Label-Feature Correlation.
Our benchmark highlights accuracy gain with model zoo compared to fine-tuning Imagenet models.
arXiv Detail & Related papers (2021-01-29T21:57:15Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.