論文の概要: A Backdoor Approach with Inverted Labels Using Dirty Label-Flipping Attacks
- arxiv url: http://arxiv.org/abs/2404.00076v2
- Date: Sun, 7 Apr 2024 04:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 00:06:38.834655
- Title: A Backdoor Approach with Inverted Labels Using Dirty Label-Flipping Attacks
- Title(参考訳): 重度ラベルフリップ攻撃を用いた逆ラベルによるバックドアアプローチ
- Authors: Orson Mengara,
- Abstract要約: 本研究では,「Dirty Flipping」というバックドア攻撃を提案する。
これは"label-on-label"という汚いラベル技術を使用して、ターゲットクラスに関連する選択されたデータパターンのトリガ(拍手)を入力し、ステルスなバックドアを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Audio-based machine learning systems frequently use public or third-party data, which might be inaccurate. This exposes deep neural network (DNN) models trained on such data to potential data poisoning attacks. In this type of assault, attackers can train the DNN model using poisoned data, potentially degrading its performance. Another type of data poisoning attack that is extremely relevant to our investigation is label flipping, in which the attacker manipulates the labels for a subset of data. It has been demonstrated that these assaults may drastically reduce system performance, even for attackers with minimal abilities. In this study, we propose a backdoor attack named 'DirtyFlipping', which uses dirty label techniques, "label-on-label", to input triggers (clapping) in the selected data patterns associated with the target class, thereby enabling a stealthy backdoor.
- Abstract(参考訳): オーディオベースの機械学習システムは、公開データやサードパーティのデータを使うことが多いが、それは不正確かもしれない。
これにより、そのようなデータに基づいてトレーニングされたディープニューラルネットワーク(DNN)モデルが、潜在的なデータ中毒攻撃に公開されている。
この種の攻撃では、攻撃者は有毒なデータを使ってDNNモデルを訓練でき、性能を低下させる可能性がある。
我々の調査に非常に関係のある別のタイプのデータ中毒攻撃は、攻撃者がデータのサブセットのためにラベルを操作するラベルフリップである。
これらの攻撃は、最小限の能力を持つ攻撃者であっても、システム性能を大幅に低下させる可能性があることが示されている。
本研究では,「ラベル・オン・ラベル」という汚いラベル技術を用いて,対象クラスに関連する選択データパターンのトリガ(クラップ)を入力し,ステルスなバックドアを実現する「DirtyFlipping」というバックドア攻撃を提案する。
関連論文リスト
- Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
クリーンラベル攻撃は、毒性のあるデータのラベルを変更することなく攻撃を行うことができる、よりステルスなバックドア攻撃である。
本研究は,攻撃成功率を高めるために,標的クラス内の少数の訓練サンプルを選択的に毒殺する方法について検討した。
私たちの脅威モデルは、サードパーティのデータセットで機械学習モデルをトレーニングする上で深刻な脅威となる。
論文 参考訳(メタデータ) (2024-07-15T15:38:21Z) - Poisoning-based Backdoor Attacks for Arbitrary Target Label with Positive Triggers [8.15496105932744]
中毒ベースのバックドア攻撃は、ディープニューラルネットワーク(DNN)トレーニングのデータ準備段階における脆弱性を露呈する。
我々は,敵対的手法にインスパイアされた新たなトリガーの分類を開発し,Positive Triggers (PPT) を用いたマルチラベル・マルチペイロード型バックドアアタックを開発した。
汚いラベル設定とクリーンラベル設定の両方において、提案した攻撃が様々なデータセットの精度を犠牲にすることなく高い攻撃成功率を達成することを実証的に示す。
論文 参考訳(メタデータ) (2024-05-09T06:45:11Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
本研究は, よく設計された毒物標的データによるモデル適応に対するバックドア攻撃の可能性を探る。
既存の適応アルゴリズムと組み合わせたMixAdaptというプラグイン・アンド・プレイ方式を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Backdoor Cleansing with Unlabeled Data [70.29989887008209]
外部訓練されたディープニューラルネットワーク(DNN)は、バックドア攻撃を受ける可能性がある。
トレーニングラベルを必要としない新しい防衛手法を提案する。
ラベルなしで訓練された本手法は,ラベルを用いて訓練した最先端の防御手法と同等である。
論文 参考訳(メタデータ) (2022-11-22T06:29:30Z) - BITE: Textual Backdoor Attacks with Iterative Trigger Injection [24.76186072273438]
バックドア攻撃はNLPシステムにとって新たな脅威となっている。
有害なトレーニングデータを提供することで、敵は被害者モデルに"バックドア"を埋め込むことができる。
ターゲットラベルと「トリガーワード」のセットとの間に強い相関関係を確立するため、トレーニングデータを害するバックドアアタックであるBITEを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:58:38Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
バックドア攻撃者は、トレーニングデータを改ざんして、そのデータに基づいてトレーニングされたモデルに脆弱性を埋め込む。
この脆弱性は、モデル入力に"トリガー"を配置することで、推論時にアクティベートされる。
我々は,工芸過程において,勾配マッチング,データ選択,ターゲットモデル再トレーニングを利用した新しい隠れトリガ攻撃,Sleeper Agentを開発した。
論文 参考訳(メタデータ) (2021-06-16T17:09:55Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。