On-the-fly Definition Augmentation of LLMs for Biomedical NER
- URL: http://arxiv.org/abs/2404.00152v2
- Date: Tue, 23 Apr 2024 17:43:31 GMT
- Title: On-the-fly Definition Augmentation of LLMs for Biomedical NER
- Authors: Monica Munnangi, Sergey Feldman, Byron C Wallace, Silvio Amir, Tom Hope, Aakanksha Naik,
- Abstract summary: LLMs struggle on biomedical NER tasks due to specialized terminology and lack of training data.
We develop a new knowledge augmentation approach which incorporates definitions of relevant concepts on-the-fly.
We find that careful prompting strategies also improve LLM performance, allowing them to outperform fine-tuned language models in few-shot settings.
- Score: 28.02028191114401
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite their general capabilities, LLMs still struggle on biomedical NER tasks, which are difficult due to the presence of specialized terminology and lack of training data. In this work we set out to improve LLM performance on biomedical NER in limited data settings via a new knowledge augmentation approach which incorporates definitions of relevant concepts on-the-fly. During this process, to provide a test bed for knowledge augmentation, we perform a comprehensive exploration of prompting strategies. Our experiments show that definition augmentation is useful for both open source and closed LLMs. For example, it leads to a relative improvement of 15\% (on average) in GPT-4 performance (F1) across all (six) of our test datasets. We conduct extensive ablations and analyses to demonstrate that our performance improvements stem from adding relevant definitional knowledge. We find that careful prompting strategies also improve LLM performance, allowing them to outperform fine-tuned language models in few-shot settings. To facilitate future research in this direction, we release our code at https://github.com/allenai/beacon.
Related papers
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.
This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - Escaping Collapse: The Strength of Weak Data for Large Language Model Training [15.77316232527746]
We develop a theoretical framework to investigate how much curation is needed in order to ensure that LLM performance continually improves.
We describe a training procedure that converges to an optimal LLM even if almost all of the non-synthetic training data is of poor quality.
arXiv Detail & Related papers (2025-02-13T03:20:37Z) - Enhancing LLM's Ability to Generate More Repository-Aware Unit Tests Through Precise Contextual Information Injection [4.367526927436771]
Large Language Models (LLMs) guided by prompt engineering have gained attention for their ability to handle a broad range of tasks.
LLMs may exhibit hallucinations when generating unit tests for focal methods or functions due to their lack of awareness regarding the project's global context.
We propose RATester, which enhances the LLM's ability to generate more repository-aware unit tests.
arXiv Detail & Related papers (2025-01-13T15:43:36Z) - LLMs are not Zero-Shot Reasoners for Biomedical Information Extraction [13.965777046473885]
Large Language Models (LLMs) are increasingly adopted for applications in healthcare.
It is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain.
arXiv Detail & Related papers (2024-08-22T09:37:40Z) - Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling [65.72918416258219]
Supportiveness-based Knowledge Rewriting (SKR) is a robust and pluggable knowledge rewriter inherently optimized for LLM generation.
Based on knowledge supportiveness, we first design a training data curation strategy for our rewriter model.
We then introduce the direct preference optimization (DPO) algorithm to align the generated rewrites to optimal supportiveness.
arXiv Detail & Related papers (2024-06-12T11:52:35Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.