Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting
- URL: http://arxiv.org/abs/2305.12723v2
- Date: Thu, 16 May 2024 05:53:55 GMT
- Title: Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting
- Authors: Xinlu Zhang, Shiyang Li, Xianjun Yang, Chenxin Tian, Yao Qin, Linda Ruth Petzold,
- Abstract summary: We present a method that harnesses large language models' medical expertise to boost SLM performance in medical tasks under privacy-restricted scenarios.
Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context.
Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks.
- Score: 24.201549275369487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demonstrate remarkable medical expertise, but data privacy concerns impede their direct use in healthcare environments. Although offering improved data privacy protection, domain-specific small language models (SLMs) often underperform LLMs, emphasizing the need for methods that reduce this performance gap while alleviating privacy concerns. In this paper, we present a simple yet effective method that harnesses LLMs' medical proficiency to boost SLM performance in medical tasks under privacy-restricted scenarios. Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context by simulating clinicians' thought processes. This context serves as additional input for SLMs, augmenting their decision-making capabilities. Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks, achieving up to a 22.57% increase in absolute accuracy compared to SLM fine-tuning without context, and sets new state-of-the-art results in two medical tasks within privacy-restricted scenarios. Further out-of-domain testing and experiments in two general domain datasets showcase its generalizability and broad applicability. Our code can be found at https://github.com/XZhang97666/PrivacyBoost-SLM.
Related papers
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - Boosting Healthcare LLMs Through Retrieved Context [0.6144680854063939]
This study explores the boundaries of context retrieval methods within the healthcare domain.
Our findings reveal how open LLMs can achieve performance comparable to the biggest private solutions on established healthcare benchmarks.
In particular, we propose OpenMedPrompt to improve the generation of more reliable open-ended answers.
arXiv Detail & Related papers (2024-09-23T15:33:38Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Knowledge-grounded Adaptation Strategy for Vision-language Models: Building Unique Case-set for Screening Mammograms for Residents Training [5.819704618007536]
A visual-language model (VLM) pre-trained on natural images and text pairs poses a significant barrier when applied to medical contexts.
We propose a framework designed to adeptly tailor VLMs to the medical domain, employing selective sampling and hard-negative mining techniques.
arXiv Detail & Related papers (2024-05-30T04:04:36Z) - D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
Large language models (LLMs) have garnered significant attention and widespread usage due to their impressive performance in various tasks.
However, they are not without their own set of challenges, including issues such as hallucinations, factual inconsistencies, and limitations in numerical-quantitative reasoning.
arXiv Detail & Related papers (2024-05-07T10:11:14Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.