What an event is not: unravelling the identity of events in quantum theory and gravity
- URL: http://arxiv.org/abs/2404.00159v1
- Date: Fri, 29 Mar 2024 21:22:16 GMT
- Title: What an event is not: unravelling the identity of events in quantum theory and gravity
- Authors: Anne-Catherine de la Hamette, Viktoria Kabel, Časlav Brukner,
- Abstract summary: We explore the notion of events at the intersection between quantum physics and gravity.
By going through various experiments and thought experiments, we analyse which properties can and cannot be used to define events in such non-classical contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the notion of events at the intersection between quantum physics and gravity, inspired by recent research on superpositions of semiclassical spacetimes. By going through various experiments and thought experiments -- from a decaying atom, to the double-slit experiment, to the quantum switch -- we analyse which properties can and cannot be used to define events in such non-classical contexts. Our findings suggest an operational, context-dependent definition of events which emphasises that their properties can be accessed without destroying or altering observed phenomena. We discuss the implications of this understanding of events for indefinite causal order as well as the non-absoluteness of events in the Wigner's friend thought experiment. These findings provide a first step for developing a notion of event in quantum spacetime.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Unambiguous discrimination of general quantum operations [14.537575399621572]
We experimentally demonstrate the optimal discrimination of up to 6 displacement operators and the unambiguous discrimination of non-unitary quantum operations.
Our results are expected to stimulate a wide range of valuable applications in the field of quantum sensing.
arXiv Detail & Related papers (2024-04-20T08:22:04Z) - Quantum probabilities for the causal ordering of events [0.0]
We develop a new formalism for constructing probabilities associated to the causal ordering of events in quantum theory.
We show how these notions generalize to quantum systems, where there exists no fundamental notion of trajectory.
arXiv Detail & Related papers (2023-09-18T07:36:48Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Geometric Event-Based Relativistic Quantum Mechanics [8.057006406834466]
We propose a special relativistic framework for quantum mechanics.
It is based on introducing a Hilbert space for events.
Our theory satisfies the full Poincare' symmetry as a geometric' unitary transformation.
arXiv Detail & Related papers (2022-06-16T17:58:09Z) - Events in quantum mechanics are maximally non-absolute [0.9176056742068814]
We prove that quantum correlations can be maximally non-absolute according to both quantifiers.
We show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.
arXiv Detail & Related papers (2021-12-19T21:15:16Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - A quantum formalism for events and how time can emerge from its
foundations [0.0]
We extend the classical concept of an event to the quantum domain by defining an event as a transfer of information between physical systems.
We propose that a well-defined instant of time, like any other observable, arises from a single event, thus being an observer-dependent property.
arXiv Detail & Related papers (2020-07-01T14:23:04Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.