論文の概要: Multi-Level Neural Scene Graphs for Dynamic Urban Environments
- arxiv url: http://arxiv.org/abs/2404.00168v1
- Date: Fri, 29 Mar 2024 21:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:56:43.491868
- Title: Multi-Level Neural Scene Graphs for Dynamic Urban Environments
- Title(参考訳): 動的都市環境のためのマルチレベルニューラルシーングラフ
- Authors: Tobias Fischer, Lorenzo Porzi, Samuel Rota Bulò, Marc Pollefeys, Peter Kontschieder,
- Abstract要約: 本稿では, 動的都市環境に対する新しい分解可能放射場アプローチを提案する。
本稿では,数百の高速移動物体を含む数十のシーケンスから数千の画像にスケールする多段階ニューラルシーングラフ表現を提案する。
- 参考スコア(独自算出の注目度): 64.26401304233843
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We estimate the radiance field of large-scale dynamic areas from multiple vehicle captures under varying environmental conditions. Previous works in this domain are either restricted to static environments, do not scale to more than a single short video, or struggle to separately represent dynamic object instances. To this end, we present a novel, decomposable radiance field approach for dynamic urban environments. We propose a multi-level neural scene graph representation that scales to thousands of images from dozens of sequences with hundreds of fast-moving objects. To enable efficient training and rendering of our representation, we develop a fast composite ray sampling and rendering scheme. To test our approach in urban driving scenarios, we introduce a new, novel view synthesis benchmark. We show that our approach outperforms prior art by a significant margin on both established and our proposed benchmark while being faster in training and rendering.
- Abstract(参考訳): 環境条件の異なる複数車両からの大規模動的領域の放射界を推定する。
このドメインの以前の作業は、静的な環境に制限されているか、単一のショートビデオ以上のスケールしないか、動的オブジェクトインスタンスを別々に表現するのに苦労している。
この目的のために, 動的都市環境に対する新しい分解可能な放射場アプローチを提案する。
本稿では,数百の高速移動物体を含む数十のシーケンスから数千の画像にスケールする多段階ニューラルシーングラフ表現を提案する。
表現の効率的なトレーニングとレンダリングを可能にするために,高速な複合光線サンプリング・レンダリング手法を開発した。
都市の運転シナリオにおける我々のアプローチをテストするために,新しいビュー合成ベンチマークを導入する。
我々の手法は、トレーニングやレンダリングを高速化しながら、確立されたベンチマークと提案したベンチマークの両方において、先行技術よりも優れたパフォーマンスを示します。
関連論文リスト
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
動的オブジェクトの表現を大幅に強化するフレームワークであるDENSERを提案する。
提案手法は最先端の手法を広いマージンで大幅に上回る。
論文 参考訳(メタデータ) (2024-09-16T07:11:58Z) - D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
本稿では,スマートフォンのキャプチャなどのモノクロ映像から動的に新しいビューを合成する手法を導入することにより,この分野に貢献する。
我々のアプローチは、局所的な幾何学と外観を別個のハッシュエンコードされたニューラル特徴グリッドにエンコードする暗黙の時間条件のポイントクラウドである、$textitdynamic Neural point cloudとして表現されている。
論文 参考訳(メタデータ) (2024-06-14T14:35:44Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
本研究では,シーンをレンダリングする動的領域の階層化モデリングを可能にする意味的セマンティックギアに基づく,時間的(4D)埋め込みの学習方法を提案する。
同時に、ほぼ無償で、当社のトラッキングアプローチは、既存のNeRFベースのメソッドでまだ達成されていない機能である、自由視点(free-view of interest)を可能にします。
論文 参考訳(メタデータ) (2024-06-06T03:37:39Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
大規模でダイナミックな都市部における新規ビュー合成(NVS)のための効率的なニューラル3Dシーン表現法を提案する。
本研究では,大規模都市にスケールするニューラルネットワークシーン表現である4DGFを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:39Z) - ProSGNeRF: Progressive Dynamic Neural Scene Graph with Frequency
Modulated Auto-Encoder in Urban Scenes [16.037300340326368]
暗黙の神経表現は、大規模で複雑なシーンのビュー合成において有望な結果を示している。
既存のアプローチでは、素早く動くオブジェクトをキャプチャできないか、カメラのエゴモーションなしでシーングラフを構築する必要がある。
本研究では,大規模都市景観と高速移動車両の視点合成問題を共同で解決することを目的とする。
論文 参考訳(メタデータ) (2023-12-14T16:11:42Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
複雑な動的シーンを描写したモノクロ映像から新しいビューを合成する問題に対処する。
我々は,近傍のビューから特徴を集約することで,新しい視点を合成するボリューム画像ベースのレンダリングフレームワークを採用する。
動的シーンデータセットにおける最先端手法の大幅な改善を示す。
論文 参考訳(メタデータ) (2022-11-20T20:57:02Z) - wildNeRF: Complete view synthesis of in-the-wild dynamic scenes captured
using sparse monocular data [16.7345472998388]
本稿では,動的非構造シーンの新規視点合成のために,自己教師付きで学習可能な新しいニューラルラジアンスモデルを提案する。
我々のエンドツーエンドのトレーニング可能なアルゴリズムは、数秒で非常に複雑で現実世界の静的なシーンを学習し、数分で剛性と非剛性の両方のダイナミックなシーンを学習する。
論文 参考訳(メタデータ) (2022-09-20T14:37:56Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) は、一般的な非剛体動的シーンに対する再構成および新しいビュー合成手法である。
一つのコンシューマ級カメラでさえ、新しい仮想カメラビューからダイナミックシーンの洗練されたレンダリングを合成するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-12-22T18:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。