論文の概要: The LSCD Benchmark: a Testbed for Diachronic Word Meaning Tasks
- arxiv url: http://arxiv.org/abs/2404.00176v1
- Date: Fri, 29 Mar 2024 22:11:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:56:43.483049
- Title: The LSCD Benchmark: a Testbed for Diachronic Word Meaning Tasks
- Title(参考訳): LSCDベンチマーク:Diachronic Word Meaning Tasksのテストベッド
- Authors: Dominik Schlechtweg, Shafqat Mumtaz Virk, Nikolay Arefyev,
- Abstract要約: Lexical Semantic Change Detection (LSCD) は複雑な補題レベルのタスクである。
このリポジトリは、WiC、WSI、LSCDのモデル評価を可能にすることで、タスクのモジュラリティを反映している。
- 参考スコア(独自算出の注目度): 3.8042401909826964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lexical Semantic Change Detection (LSCD) is a complex, lemma-level task, which is usually operationalized based on two subsequently applied usage-level tasks: First, Word-in-Context (WiC) labels are derived for pairs of usages. Then, these labels are represented in a graph on which Word Sense Induction (WSI) is applied to derive sense clusters. Finally, LSCD labels are derived by comparing sense clusters over time. This modularity is reflected in most LSCD datasets and models. It also leads to a large heterogeneity in modeling options and task definitions, which is exacerbated by a variety of dataset versions, preprocessing options and evaluation metrics. This heterogeneity makes it difficult to evaluate models under comparable conditions, to choose optimal model combinations or to reproduce results. Hence, we provide a benchmark repository standardizing LSCD evaluation. Through transparent implementation results become easily reproducible and by standardization different components can be freely combined. The repository reflects the task's modularity by allowing model evaluation for WiC, WSI and LSCD. This allows for careful evaluation of increasingly complex model components providing new ways of model optimization.
- Abstract(参考訳): Lexical Semantic Change Detection (LSCD) は複雑な補題レベルのタスクであり、通常は2つの次に適用される使用レベルタスクに基づいて運用される。
次に、これらのラベルを、センスクラスタの導出にワードセンス誘導(WSI)を適用するグラフで表現する。
最後に、LSCDラベルは、時間とともにセンスクラスタを比較することによって導出される。
このモジュラリティは、ほとんどのLSCDデータセットやモデルに反映されている。
また、モデリングオプションやタスク定義において大きな異質性をもたらし、さまざまなデータセットバージョン、前処理オプション、評価指標によって悪化する。
この不均一性により、比較条件下でのモデルの評価、最適なモデルの組み合わせの選択、結果の再現が困難になる。
したがって、LSCD評価を標準化するベンチマークリポジトリを提供する。
透過的な実装の結果は容易に再現可能となり、異なるコンポーネントを自由に組み合わせることができる。
このリポジトリはWiC、WSI、LSCDのモデル評価を可能にすることで、タスクのモジュラリティを反映している。
これにより、モデル最適化の新しい方法を提供する、ますます複雑なモデルコンポーネントの慎重な評価が可能になる。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - A Systematic Comparison of Contextualized Word Embeddings for Lexical
Semantic Change [0.696194614504832]
我々は、勾配変化検出(GCD)のための最先端モデルとアプローチを評価する。
我々はLCC問題をWord-in-Context(WiC)タスクとWord Sense Injection(WSI)タスクに分解し、これらの異なるレベルのモデルと比較する。
i) APDはGCDの他のアプローチよりも優れており、 (ii) XL-LEXEMEはGPT-4と同等でありながら、WiC、WSI、GCDの他の文脈モデルよりも優れています。
論文 参考訳(メタデータ) (2024-02-19T10:04:59Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
本稿では,LiDARセマンティックセグメンテーションモデルのロバスト性を,様々な汚職の下で包括的に解析することを目的とする。
本稿では,悪天候,計測ノイズ,デバイス間不一致という3つのグループで16のドメイン外LiDAR破損を特徴とするSemanticKITTI-Cというベンチマークを提案する。
我々は、単純だが効果的な修正によってロバスト性を大幅に向上させるロバストLiDARセグメンテーションモデル(RLSeg)を設計する。
論文 参考訳(メタデータ) (2023-01-03T06:47:31Z) - Word Sense Induction with Hierarchical Clustering and Mutual Information
Maximization [14.997937028599255]
単語知覚誘導は自然言語処理において難しい問題である。
階層的クラスタリングと不変情報クラスタリングに基づく新しい教師なし手法を提案する。
我々は、ある場合において、我々のアプローチが先行したWSIの最先端手法よりも優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-10-11T13:04:06Z) - A Variational Hierarchical Model for Neural Cross-Lingual Summarization [85.44969140204026]
言語間の要約(英: cross-lingual summarization)とは、ある言語の文書を別の言語の要約に変換することである。
CLSに関する既存の研究は主にパイプライン手法の利用やエンドツーエンドモデルの共同トレーニングに重点を置いている。
条件付き変分自動エンコーダに基づくCLSタスクの階層モデルを提案する。
論文 参考訳(メタデータ) (2022-03-08T02:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。