論文の概要: Efficient Automatic Tuning for Data-driven Model Predictive Control via Meta-Learning
- arxiv url: http://arxiv.org/abs/2404.00232v1
- Date: Sat, 30 Mar 2024 03:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:36:22.069040
- Title: Efficient Automatic Tuning for Data-driven Model Predictive Control via Meta-Learning
- Title(参考訳): メタラーニングによるデータ駆動モデル予測制御のための効率的な自動チューニング
- Authors: Baoyu Li, William Edwards, Kris Hauser,
- Abstract要約: AutoMPCは、データ駆動モデル予測制御の自動化と最適化を行うPythonパッケージである。
本稿では,BOを温めることでAutoMPCの効率と安定性を向上させる,Portfolioというメタ学習手法を提案する。
- 参考スコア(独自算出の注目度): 23.51712413621475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AutoMPC is a Python package that automates and optimizes data-driven model predictive control. However, it can be computationally expensive and unstable when exploring large search spaces using pure Bayesian Optimization (BO). To address these issues, this paper proposes to employ a meta-learning approach called Portfolio that improves AutoMPC's efficiency and stability by warmstarting BO. Portfolio optimizes initial designs for BO using a diverse set of configurations from previous tasks and stabilizes the tuning process by fixing initial configurations instead of selecting them randomly. Experimental results demonstrate that Portfolio outperforms the pure BO in finding desirable solutions for AutoMPC within limited computational resources on 11 nonlinear control simulation benchmarks and 1 physical underwater soft robot dataset.
- Abstract(参考訳): AutoMPCは、データ駆動モデル予測制御の自動化と最適化を行うPythonパッケージである。
しかし、純粋なベイズ最適化(BO)を用いて大規模な探索空間を探索する場合、計算コストが高く不安定である。
これらの課題に対処するため,本論文では,BOを温めることでAutoMPCの効率性と安定性を向上させる,Portfolioと呼ばれるメタ学習手法を提案する。
Portfolioは、以前のタスクからさまざまな設定セットを使用してBOの初期設計を最適化し、初期設定をランダムに選択せずに修正することでチューニングプロセスを安定化する。
実験の結果,11個の非線形制御シミュレーションベンチマークと1個の水中ソフトロボットデータセットを用いて,限られた計算資源内でのAutoMPCの望ましい解を見つける上で,Portfolioは純粋なBOよりも優れていた。
関連論文リスト
- Bisimulation metric for Model Predictive Control [44.301098448479195]
Bisimulation Metric for Model Predictive Control (BS-MPC) は、目的関数にbisimulation metric lossを組み込んでエンコーダを直接最適化する新しい手法である。
BS-MPCは、トレーニング時間を削減することにより、トレーニング安定性、入力ノイズに対する堅牢性、および計算効率を向上させる。
我々は,DeepMind Control Suiteから連続制御および画像ベースタスクのBS-MPCを評価する。
論文 参考訳(メタデータ) (2024-10-06T17:12:10Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
ファンデーションモデルは、微調整によって下流タスクに適応できるリッチな表現をエンコードする。
手作り正則化技術を用いた頑健な微調整への最近のアプローチ
我々は、堅牢な微調整のためのデータ駆動型アプローチであるAutoFTを提案する。
論文 参考訳(メタデータ) (2024-01-18T18:58:49Z) - Deep Model Predictive Optimization [21.22047409735362]
ロボット工学における大きな課題は、現実世界で複雑でアジャイルな振る舞いを可能にする堅牢なポリシーを設計することである。
本稿では,MPC最適化アルゴリズムの内ループを体験を通して直接学習するDeep Model Predictive Optimization (DMPO)を提案する。
DMPOは、MFRLでトレーニングされたエンドツーエンドポリシーを19%削減することで、最高のMPCアルゴリズムを最大27%向上させることができる。
論文 参考訳(メタデータ) (2023-10-06T21:11:52Z) - Towards Automated Design of Bayesian Optimization via Exploratory
Landscape Analysis [11.143778114800272]
AFの動的選択はBO設計に有用であることを示す。
我々は,オートML支援のオンザフライBO設計への道を開き,その動作をランニング・バイ・ランで調整する。
論文 参考訳(メタデータ) (2022-11-17T17:15:04Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
実データ比率を自動的にスケジュールするAutoMBPOというフレームワークを提案する。
本稿ではまず,政策訓練における実データの役割を理論的に分析し,実際のデータの比率を徐々に高めれば,より優れた性能が得られることを示唆する。
論文 参考訳(メタデータ) (2021-11-16T15:24:59Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
オンラインアルゴリズムは、大規模なバッチにデータを保存したり処理したりすることなく、リアルタイムで更新を計算できるため、大規模な学習環境で人気がある。
一定のステップサイズを使用すると、これらのアルゴリズムはデータやモデル特性などの問題パラメータのドリフトに適応し、適切な精度で最適解を追跡する能力を持つ。
定常仮定に基づく定常状態性能とランダムウォークモデルによるオンライン学習者の追跡性能の関連性を確立する。
論文 参考訳(メタデータ) (2020-04-04T14:16:27Z) - Stochastic Finite State Control of POMDPs with LTL Specifications [14.163899014007647]
部分的に観測可能なマルコフ決定プロセス(POMDP)は、不確実性の下での自律的な意思決定のためのモデリングフレームワークを提供する。
本稿では,POMDPに対する準最適有限状態制御器(sFSC)の合成に関する定量的問題について考察する。
本稿では,sFSC サイズが制御される有界ポリシアルゴリズムと,連続的な繰り返しにより制御器の性能が向上する任意の時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-21T18:10:47Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。