DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
- URL: http://arxiv.org/abs/2404.00264v1
- Date: Sat, 30 Mar 2024 06:40:54 GMT
- Title: DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
- Authors: Aru Maekawa, Satoshi Kosugi, Kotaro Funakoshi, Manabu Okumura,
- Abstract summary: We propose a novel text dataset distillation approach called Distilling dataset into Language Model (DiLM)
DiLM trains a language model to generate informative synthetic training samples as text data, instead of directly optimizing synthetic samples.
Our code will be available at https://github.com/arumaekawa/DiLM.
- Score: 20.703102374139537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset distillation aims to compress a training dataset by creating a small number of informative synthetic samples such that neural networks trained on them perform as well as those trained on the original training dataset. Current text dataset distillation methods create each synthetic sample as a sequence of word embeddings instead of a text to apply gradient-based optimization; however, such embedding-level distilled datasets cannot be used for training other models whose word embedding weights are different from the model used for distillation. To address this issue, we propose a novel text dataset distillation approach, called Distilling dataset into Language Model (DiLM), which trains a language model to generate informative synthetic training samples as text data, instead of directly optimizing synthetic samples. We evaluated DiLM on various text classification datasets and showed that distilled synthetic datasets from DiLM outperform those from current coreset selection methods. DiLM achieved remarkable generalization performance in training different types of models and in-context learning of large language models. Our code will be available at https://github.com/arumaekawa/DiLM.
Related papers
- Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
Large language models (LLMs) produce high-quality synthetic data to enhance the performance of smaller models.
LLMs-generated synthetic data often differs from the real data in key language attributes.
We introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching.
arXiv Detail & Related papers (2025-02-09T16:43:32Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference corpus.
To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks.
Our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.
arXiv Detail & Related papers (2022-12-16T23:37:44Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.