Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms
- URL: http://arxiv.org/abs/2204.03896v2
- Date: Mon, 3 Jun 2024 14:09:05 GMT
- Title: Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms
- Authors: Wonkee Lee, Seong-Hwan Heo, Jong-Hyeok Lee,
- Abstract summary: We focus on data-synthesis methods to create high-quality synthetic data.
We present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data.
Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
- Score: 5.366354612549173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning that leverages synthetic data for training has been widely adopted for developing automatic post-editing (APE) models due to the lack of training data. With this aim, we focus on data-synthesis methods to create high-quality synthetic data. Given that APE takes as input a machine-translation result that might include errors, we present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data. We introduce a noising-based data-synthesis method by adapting the masked language model approach, generating a noisy text from a clean text by infilling masked tokens with erroneous tokens. Moreover, we propose selective corpus interleaving that combines two separate synthetic datasets by taking only the advantageous samples to enhance the quality of the synthetic data further. Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
Related papers
- Improving Grammatical Error Correction via Contextual Data Augmentation [49.746484518527716]
We propose a synthetic data construction method based on contextual augmentation.
Specifically, we combine rule-based substitution with model-based generation.
We also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data.
arXiv Detail & Related papers (2024-06-25T10:49:56Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
We introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework.
We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score.
Our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.
arXiv Detail & Related papers (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Generation and Simulation of Synthetic Datasets with Copulas [0.0]
We present a complete and reliable algorithm for generating a synthetic data set comprising numeric or categorical variables.
Applying our methodology to two datasets shows better performance compared to other methods such as SMOTE and autoencoders.
arXiv Detail & Related papers (2022-03-30T13:22:44Z) - Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition [18.924716098922683]
Machine learning with synthetic data is not trivial due to the gap between the synthetic and the real data distributions.
We propose two novel techniques during training to mitigate the problems due to the distribution gap.
We show that these methods significantly improve the training of speech recognition models using synthetic data.
arXiv Detail & Related papers (2021-10-21T21:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.