論文の概要: Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
- arxiv url: http://arxiv.org/abs/2404.00312v1
- Date: Sat, 30 Mar 2024 10:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:20:26.022934
- Title: Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
- Title(参考訳): ローショット画像分類のための事前学習モデルのベイズ探索
- Authors: Yibo Miao, Yu Lei, Feng Zhou, Zhijie Deng,
- Abstract要約: 本研究はガウス過程に基づくシンプルで効果的な確率的モデルアンサンブルフレームワークを提案する。
平均関数をCLIPとカーネル関数で指定することで,事前知識の統合を実現する。
提案手法は,予測性能に関する競争アンサンブルベースラインを一貫して上回ることを示す。
- 参考スコア(独自算出の注目度): 14.211305168954594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-shot image classification is a fundamental task in computer vision, and the emergence of large-scale vision-language models such as CLIP has greatly advanced the forefront of research in this field. However, most existing CLIP-based methods lack the flexibility to effectively incorporate other pre-trained models that encompass knowledge distinct from CLIP. To bridge the gap, this work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes, which have previously demonstrated remarkable efficacy in processing small data. We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function with an ensemble of deep kernels built upon various pre-trained models. By regressing the classification label directly, our framework enables analytical inference, straightforward uncertainty quantification, and principled hyper-parameter tuning. Through extensive experiments on standard benchmarks, we demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance. Additionally, we assess the robustness of our method and the quality of the yielded uncertainty estimates on out-of-distribution datasets. We also illustrate that our method, despite relying on label regression, still enjoys superior model calibration compared to most deterministic baselines.
- Abstract(参考訳): ローショット画像分類はコンピュータビジョンの基本的な課題であり、CLIPのような大規模視覚言語モデルの出現は、この分野における研究の最前線を大いに前進させてきた。
しかし、既存のCLIPベースのほとんどのメソッドは、CLIPとは異なる知識を含む、トレーニング済みの他のモデルを有効に組み込む柔軟性を欠いている。
このギャップを埋めるために,ガウス過程に基づくシンプルで効果的な確率的モデルアンサンブルフレームワークを提案する。
事前学習モデル上に構築された深層カーネルのアンサンブルを用いて,CLIPとカーネル関数の平均関数を指定することにより,事前知識の統合を実現する。
分類ラベルを直接回帰することにより,解析的推論,不確実性定量化,原理的ハイパーパラメータチューニングが可能となる。
標準ベンチマークの広範な実験を通じて,本手法が予測性能に関する競争アンサンブルベースラインを一貫して上回っていることを示す。
さらに, アウト・オブ・ディストリビューション・データセットを用いて, 提案手法のロバスト性と, 得られた不確実性評価の質を評価する。
また,提案手法はラベル回帰に依存してはいるものの,ほとんどの決定論的ベースラインよりも優れたモデルキャリブレーションを享受していることを示す。
関連論文リスト
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
CLIPのような微調整済みの視覚言語モデルは、さまざまな下流タスクで成功している。
これらの調整されたモデルは高度に専門化され、実際の展開の実用性が制限される傾向にある。
微調整CLIPのための軽量表現校正法を提案する。
論文 参考訳(メタデータ) (2024-03-12T01:47:17Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
本稿では,観測ノイズについて最小限の仮定を行う等化量子レグレッションを活用することを提案する。
これは経験的ベンチマークでのHPO収束を早くすることを意味する。
論文 参考訳(メタデータ) (2023-05-05T15:33:39Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
固定テストセットは、可能なデータバリエーションのごく一部しかキャプチャできないため、制限され、新しい過度なソリューションを生成する傾向にある、と私たちは主張する。
これらの欠点を克服するために、学習した特徴空間の構造から直接モデルのロバスト性を推定することを提案する。
論文 参考訳(メタデータ) (2021-06-23T10:52:29Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。