Advancing Multimodal Data Fusion in Pain Recognition: A Strategy Leveraging Statistical Correlation and Human-Centered Perspectives
- URL: http://arxiv.org/abs/2404.00320v1
- Date: Sat, 30 Mar 2024 11:13:18 GMT
- Title: Advancing Multimodal Data Fusion in Pain Recognition: A Strategy Leveraging Statistical Correlation and Human-Centered Perspectives
- Authors: Xingrui Gu, Zhixuan Wang, Irisa Jin, Zekun Wu,
- Abstract summary: This research tackles the challenge of integrating heterogeneous data for specific behavior recognition within the domain of Pain Recognition.
We present a novel methodology that harmonizes statistical correlations with a human-centered approach.
Our contributions extend beyond the field of Pain Recognition by delivering new insights into modality fusion and human-centered computing applications.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research tackles the challenge of integrating heterogeneous data for specific behavior recognition within the domain of Pain Recognition, presenting a novel methodology that harmonizes statistical correlations with a human-centered approach. By leveraging a diverse range of deep learning architectures, we highlight the adaptability and efficacy of our approach in improving model performance across various complex scenarios. The novelty of our methodology is the strategic incorporation of statistical relevance weights and the segmentation of modalities from a human-centric perspective, enhancing model precision and providing a explainable analysis of multimodal data. This study surpasses traditional modality fusion techniques by underscoring the role of data diversity and customized modality segmentation in enhancing pain behavior analysis. Introducing a framework that matches each modality with an suited classifier, based on the statistical significance, signals a move towards customized and accurate multimodal fusion strategies. Our contributions extend beyond the field of Pain Recognition by delivering new insights into modality fusion and human-centered computing applications, contributing towards explainable AI and bolstering patient-centric healthcare interventions. Thus, we bridge a significant void in the effective and interpretable fusion of multimodal data, establishing a novel standard for forthcoming inquiries in pain behavior recognition and allied fields.
Related papers
- Multimodal Attention-Aware Fusion for Diagnosing Distal Myopathy: Evaluating Model Interpretability and Clinician Trust [19.107204920543676]
Distal myopathy represents a heterogeneous group of skeletal muscle disorders with broad clinical manifestations.<n>We propose a novel multimodal attention-aware fusion architecture that combines features extracted from two distinct deep learning models.<n>Our approach integrates these features through an attention gate mechanism, enhancing both predictive performance and interpretability.
arXiv Detail & Related papers (2025-08-02T11:08:55Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Contrastive Learning on Multimodal Analysis of Electronic Health Records [15.392566551086782]
We propose a novel feature embedding generative model and design a multimodal contrastive loss to obtain the multimodal EHR feature representation.
Our theoretical analysis demonstrates the effectiveness of multimodal learning compared to single-modality learning.
This connection paves the way for a privacy-preserving algorithm tailored for multimodal EHR feature representation learning.
arXiv Detail & Related papers (2024-03-22T03:01:42Z) - Review of multimodal machine learning approaches in healthcare [0.0]
Clinicians rely on a variety of data sources to make informed decisions.
Recent advances in machine learning have facilitated the more efficient incorporation of multimodal data.
arXiv Detail & Related papers (2024-02-04T12:21:38Z) - Enhancing Representation in Medical Vision-Language Foundation Models
via Multi-Scale Information Extraction Techniques [41.078761802053535]
We propose a method that effectively exploits multi-scale information to enhance the performance of medical foundation models.
We evaluate the effectiveness of the proposed method on six open-source datasets across different clinical tasks.
arXiv Detail & Related papers (2024-01-03T07:22:54Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Joint Self-Supervised and Supervised Contrastive Learning for Multimodal
MRI Data: Towards Predicting Abnormal Neurodevelopment [5.771221868064265]
We present a novel joint self-supervised and supervised contrastive learning method to learn the robust latent feature representation from multimodal MRI data.
Our method has the capability to facilitate computer-aided diagnosis within clinical practice, harnessing the power of multimodal data.
arXiv Detail & Related papers (2023-12-22T21:05:51Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.