論文の概要: Advancing Multimodal Data Fusion in Pain Recognition: A Strategy Leveraging Statistical Correlation and Human-Centered Perspectives
- arxiv url: http://arxiv.org/abs/2404.00320v2
- Date: Thu, 1 Aug 2024 09:07:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 14:14:35.347625
- Title: Advancing Multimodal Data Fusion in Pain Recognition: A Strategy Leveraging Statistical Correlation and Human-Centered Perspectives
- Title(参考訳): 痛み認識におけるマルチモーダルデータ融合の促進:統計的相関と人間中心の視点を活用した戦略
- Authors: Xingrui Gu, Zhixuan Wang, Irisa Jin, Zekun Wu,
- Abstract要約: 本研究では、痛み行動認識のための新しいマルチモーダルデータ融合手法を提案する。
1)データ駆動型統計関連度重みを融合戦略に統合し,2)マルチモーダル表現学習に人間中心の運動特性を取り入れた。
本研究は,患者中心型医療介入を推進し,説明可能な臨床意思決定を支援するために重要な意味を持つ。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research presents a novel multimodal data fusion methodology for pain behavior recognition, integrating statistical correlation analysis with human-centered insights. Our approach introduces two key innovations: 1) integrating data-driven statistical relevance weights into the fusion strategy to effectively utilize complementary information from heterogeneous modalities, and 2) incorporating human-centric movement characteristics into multimodal representation learning for detailed modeling of pain behaviors. Validated across various deep learning architectures, our method demonstrates superior performance and broad applicability. We propose a customizable framework that aligns each modality with a suitable classifier based on statistical significance, advancing personalized and effective multimodal fusion. Furthermore, our methodology provides explainable analysis of multimodal data, contributing to interpretable and explainable AI in healthcare. By highlighting the importance of data diversity and modality-specific representations, we enhance traditional fusion techniques and set new standards for recognizing complex pain behaviors. Our findings have significant implications for promoting patient-centered healthcare interventions and supporting explainable clinical decision-making.
- Abstract(参考訳): 本研究では、痛み行動認識のための新しいマルチモーダルデータ融合手法を提案し、統計的相関分析と人間中心の洞察を統合する。
このアプローチには2つの重要なイノベーションがあります。
1)データ駆動統計関連度重みを融合戦略に統合し、不均一なモーダルからの補完情報を効果的に活用し、
2) 痛み行動の詳細なモデリングのためのマルチモーダル表現学習に人中心運動特性を取り入れた。
様々なディープラーニングアーキテクチャにまたがって検証された本手法は,優れた性能と広い適用性を示す。
本稿では,各モダリティを統計的意義に基づく適切な分類器と整合させ,パーソナライズされた効果的なマルチモーダル融合を推し進める,カスタマイズ可能なフレームワークを提案する。
さらに、本手法は、医療における解釈可能な、説明可能なAIに寄与するマルチモーダルデータの説明可能な分析を提供する。
データ多様性とモダリティ固有の表現の重要性を強調することで、従来の融合技術を強化し、複雑な痛み行動を認識するための新しい標準を設定します。
本研究は,患者中心型医療介入を推進し,説明可能な臨床意思決定を支援するために重要な意味を持つ。
関連論文リスト
- Contrastive Learning on Multimodal Analysis of Electronic Health Records [15.392566551086782]
本稿では,新しい特徴埋め込み生成モデルを提案し,マルチモーダルEHR特徴表現を得るためのマルチモーダルコントラスト損失を設計する。
本理論は, 単モーダル学習と比較して, 多モーダル学習の有効性を実証するものである。
この接続は、マルチモーダルEHR特徴表現学習に適したプライバシー保護アルゴリズムの道を開く。
論文 参考訳(メタデータ) (2024-03-22T03:01:42Z) - Review of multimodal machine learning approaches in healthcare [0.0]
臨床医は、情報的な判断をするために、さまざまなデータソースに依存しています。
機械学習の最近の進歩は、より効率的なマルチモーダルデータの取り込みを促進する。
論文 参考訳(メタデータ) (2024-02-04T12:21:38Z) - Enhancing Representation in Medical Vision-Language Foundation Models
via Multi-Scale Information Extraction Techniques [41.078761802053535]
本稿では,医療基盤モデルの性能向上のために,マルチスケール情報を効果的に活用する手法を提案する。
本研究では,6つのオープンソースデータセットに対する提案手法の有効性について検討した。
論文 参考訳(メタデータ) (2024-01-03T07:22:54Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Joint Self-Supervised and Supervised Contrastive Learning for Multimodal
MRI Data: Towards Predicting Abnormal Neurodevelopment [5.771221868064265]
マルチモーダルMRIデータから頑健な潜在特徴表現を学習するための,新しい自己教師付きコントラスト学習法を提案する。
本手法は,マルチモーダルデータの活用により,臨床実習におけるコンピュータ支援診断を容易にする能力を有する。
論文 参考訳(メタデータ) (2023-12-22T21:05:51Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。