Canoe : A System for Collaborative Learning for Neural Nets
- URL: http://arxiv.org/abs/2108.12124v2
- Date: Mon, 30 Aug 2021 01:01:58 GMT
- Title: Canoe : A System for Collaborative Learning for Neural Nets
- Authors: Harshit Daga, Yiwen Chen, Aastha Agrawal, Ada Gavrilovska
- Abstract summary: Canoe is a framework that facilitates knowledge transfer for neural networks.
Canoe provides new system support for dynamically extracting significant parameters from a helper node's neural network.
The evaluation of Canoe with different PyTorch and neural network models demonstrates that the knowledge transfer mechanism improves the model's adaptiveness to 3.5X compared to learning in isolation.
- Score: 4.547883122787855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For highly distributed environments such as edge computing, collaborative
learning approaches eschew the dependence on a global, shared model, in favor
of models tailored for each location. Creating tailored models for individual
learning contexts reduces the amount of data transfer, while collaboration
among peers provides acceptable model performance. Collaboration assumes,
however, the availability of knowledge transfer mechanisms, which are not
trivial for deep learning models where knowledge isn't easily attributed to
precise model slices. We present Canoe - a framework that facilitates knowledge
transfer for neural networks. Canoe provides new system support for dynamically
extracting significant parameters from a helper node's neural network and uses
this with a multi-model boosting-based approach to improve the predictive
performance of the target node. The evaluation of Canoe with different PyTorch
and TensorFlow neural network models demonstrates that the knowledge transfer
mechanism improves the model's adaptiveness to changes up to 3.5X compared to
learning in isolation, while affording several magnitudes reduction in data
movement costs compared to federated learning.
Related papers
- Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
Class-incremental learning (CIL) aims to train a model to learn new classes from non-stationary data streams without forgetting old ones.
We propose a new kind of connectionist model by tailoring neural unit dynamics that adapt the behavior of neural networks for CIL.
arXiv Detail & Related papers (2024-06-04T15:47:03Z) - Transfer Learning with Reconstruction Loss [12.906500431427716]
This paper proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss.
The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning.
For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization.
arXiv Detail & Related papers (2024-03-31T00:22:36Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Performance of Transfer Learning Model vs. Traditional Neural Network in
Low System Resource Environment [0.0]
We will compare the performance and cost between lighter transfer learning model and purposely built neural network for NLP application of text classification and NER model.
The rise of state-of-the-art models such as BERT, XLNet and GPT boost accuracy and benefit as a base model for transfer leanring.
arXiv Detail & Related papers (2020-10-20T08:12:56Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.