論文の概要: Reporting Eye-Tracking Data Quality: Towards a New Standard
- arxiv url: http://arxiv.org/abs/2404.00620v1
- Date: Sun, 31 Mar 2024 09:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:40:27.604924
- Title: Reporting Eye-Tracking Data Quality: Towards a New Standard
- Title(参考訳): アイトラッキングデータ品質レポート - 新しい標準に向けて
- Authors: Deborah N. Jakobi, Daniel G. Krakowczyk, Lena A. Jäger,
- Abstract要約: この研究は、視線追跡データを共有する新しいアプローチを提唱する。
フィルタリングされたデータセットや前処理されたデータセットを公開する代わりに、すべての前処理段階におけるアイトラッキングデータは、データ品質レポートとともに公開する必要がある。
データ品質を透過的に報告し、データセット間比較を可能にするため、データセットに自動的に適用可能なデータ品質報告標準とメトリクスを開発し、それらをオープンソースのPythonパッケージpymovementsに統合する。
- 参考スコア(独自算出の注目度): 1.2958449178903728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eye-tracking datasets are often shared in the format used by their creators for their original analyses, usually resulting in the exclusion of data considered irrelevant to the primary purpose. In order to increase re-usability of existing eye-tracking datasets for more diverse and initially not considered use cases, this work advocates a new approach of sharing eye-tracking data. Instead of publishing filtered and pre-processed datasets, the eye-tracking data at all pre-processing stages should be published together with data quality reports. In order to transparently report data quality and enable cross-dataset comparisons, we develop data quality reporting standards and metrics that can be automatically applied to a dataset, and integrate them into the open-source Python package pymovements (https://github.com/aeye-lab/pymovements).
- Abstract(参考訳): アイトラッキングデータセットは、オリジナルの分析のために作成者が使用するフォーマットで共有されることが多く、通常は第一の目的とは無関係と考えられるデータの除外をもたらす。
既存のアイトラッキングデータセットを、より多様で当初考慮されていないユースケースで再利用可能にするために、この研究は、アイトラッキングデータを共有するための新しいアプローチを提唱する。
フィルタリングされたデータセットや前処理されたデータセットを公開する代わりに、すべての前処理段階におけるアイトラッキングデータは、データ品質レポートとともに公開する必要がある。
データ品質を透過的に報告し、データセット間の比較を可能にするため、データセットに自動的に適用可能なデータ品質報告標準とメトリクスを開発し、それらをオープンソースのPythonパッケージpymovements(https://github.com/aeye-lab/pymovements)に統合する。
関連論文リスト
- Diffusion Models as Data Mining Tools [87.77999285241219]
本稿では、画像合成のために訓練された生成モデルを視覚データマイニングのツールとして利用する方法について述べる。
特定のデータセットから画像を合成するために条件拡散モデルを微調整した後、これらのモデルを用いて典型性尺度を定義することができることを示す。
この尺度は、地理的位置、タイムスタンプ、セマンティックラベル、さらには病気の存在など、異なるデータラベルに対する典型的な視覚的要素がどのように存在するかを評価する。
論文 参考訳(メタデータ) (2024-07-20T17:14:31Z) - Benchmarking and Analyzing Generative Data for Visual Recognition [66.55174903469722]
この研究は生成的画像の影響を深く掘り下げ、主に外部データを利用するパラダイムを比較する。
我々は、2548のカテゴリを持つ22のデータセットからなるベンチマークである textbfGenBench を考案し、様々な視覚的認識タスクにまたがる生成データを評価した。
我々の徹底的なベンチマークと分析は、将来の調査における重要な課題を特定しながら、視覚認識における生成データの約束をスポットライトで示している。
論文 参考訳(メタデータ) (2023-07-25T17:59:59Z) - Revisiting Table Detection Datasets for Visually Rich Documents [17.846536373106268]
この研究では、高品質なアノテーションでいくつかのオープンデータセットを再検討し、ノイズを特定し、クリーン化し、これらのデータセットのアノテーション定義を、Open-Tablesと呼ばれるより大きなデータセットとマージするように調整する。
情報通信技術(ICT)コモディティのPDFファイルを用いた新しいICT-TDデータセットを提案する。
実験の結果,データソースが異なるにも関わらず,既存のオープンデータセット間の領域差は小さいことがわかった。
論文 参考訳(メタデータ) (2023-05-04T01:08:15Z) - Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets [27.562256973255728]
自然言語処理モデルはしばしば、タスクに依存しない特徴とデータセットのラベルの間の急激な相関を利用して、トレーニング対象のディストリビューション内でのみうまく機能する。
そこで本研究では, 脱バイアス化したデータセットを生成して, 脱バイアス化したオフザシェルフモデルをトレーニングする手法を提案する。
提案手法は,1)高品質なラベル一貫性のあるデータサンプルを生成するためのデータジェネレータの訓練方法,2)素粒子相関に寄与するデータ点を除去するフィルタリング機構から構成される。
論文 参考訳(メタデータ) (2022-03-24T09:08:05Z) - Towards A Reliable Ground-Truth For Biased Language Detection [3.2202224129197745]
バイアスを検出する既存の方法は、主に機械学習モデルをトレーニングするための注釈付きデータに依存している。
データ収集の選択肢を評価し、2つの人気のあるクラウドソーシングプラットフォームから得られたラベルを比較した。
より詳細なアノテータトレーニングによってデータ品質が向上し、既存のバイアス検出システムの性能が向上する。
論文 参考訳(メタデータ) (2021-12-14T14:13:05Z) - Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision
Datasets from 3D Scans [103.92680099373567]
本稿では,実世界の包括的3Dスキャンからマルチタスク視覚データセットをパラメトリックサンプリングし,レンダリングするパイプラインを提案する。
サンプリングパラメータを変更することで、生成されたデータセットを“ステア”して、特定の情報を強調することが可能になる。
生成されたスタータデータセットでトレーニングされた共通アーキテクチャは、複数の共通ビジョンタスクとベンチマークで最先端のパフォーマンスに達した。
論文 参考訳(メタデータ) (2021-10-11T04:21:46Z) - Simple multi-dataset detection [83.9604523643406]
複数の大規模データセット上で統合検出器を訓練する簡単な方法を提案する。
データセット固有のアウトプットを共通の意味分類に自動的に統合する方法を示す。
私たちのアプローチは手動の分類学の調整を必要としません。
論文 参考訳(メタデータ) (2021-02-25T18:55:58Z) - A Note on Data Biases in Generative Models [16.86600007830682]
生成モデルの性能に及ぼすデータセット品質の影響について検討する。
生成モデルによりデータセットの社会的バイアスがどのように再現されるかを示す。
本稿では,写真,油絵,アニメなどの多様なデータセット間の非ペア転送を通じて,クリエイティブな応用を提示する。
論文 参考訳(メタデータ) (2020-12-04T10:46:37Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。