論文の概要: Absolute-Unified Multi-Class Anomaly Detection via Class-Agnostic Distribution Alignment
- arxiv url: http://arxiv.org/abs/2404.00724v2
- Date: Tue, 16 Apr 2024 13:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 22:17:00.350194
- Title: Absolute-Unified Multi-Class Anomaly Detection via Class-Agnostic Distribution Alignment
- Title(参考訳): クラス非依存分布アライメントによる絶対統一型マルチクラス異常検出
- Authors: Jia Guo, Haonan Han, Shuai Lu, Weihang Zhang, Huiqi Li,
- Abstract要約: 教師なし異常検出(UAD)メソッドは、各オブジェクトカテゴリごとに別々のモデルを構築する。
近年の研究では、複数のクラス、すなわちモデル統一 UAD に対する統一モデルのトレーニングが提案されている。
我々は,クラス情報,すなわちtextitabsolute-unified UADを使わずに,マルチクラス異常検出に対処する,シンプルかつ強力な手法を提案する。
- 参考スコア(独自算出の注目度): 27.375917265177847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional unsupervised anomaly detection (UAD) methods build separate models for each object category. Recent studies have proposed to train a unified model for multiple classes, namely model-unified UAD. However, such methods still implement the unified model separately on each class during inference with respective anomaly decision thresholds, which hinders their application when the image categories are entirely unavailable. In this work, we present a simple yet powerful method to address multi-class anomaly detection without any class information, namely \textit{absolute-unified} UAD. We target the crux of prior works in this challenging setting: different objects have mismatched anomaly score distributions. We propose Class-Agnostic Distribution Alignment (CADA) to align the mismatched score distribution of each implicit class without knowing class information, which enables unified anomaly detection for all classes and samples. The essence of CADA is to predict each class's score distribution of normal samples given any image, normal or anomalous, of this class. As a general component, CADA can activate the potential of nearly all UAD methods under absolute-unified setting. Our approach is extensively evaluated under the proposed setting on two popular UAD benchmark datasets, MVTec AD and VisA, where we exceed previous state-of-the-art by a large margin.
- Abstract(参考訳): 従来の教師なし異常検出(UAD)メソッドは、各オブジェクトカテゴリごとに別々のモデルを構築する。
近年の研究では、複数のクラス、すなわちモデル統一 UAD に対する統一モデルのトレーニングが提案されている。
しかし、これらの手法は、画像カテゴリが完全に利用できない場合、各異常判定しきい値の推論中に、各クラスに個別に統一モデルを実装する。
本研究では,クラス情報を一切含まない複数クラス異常検出,すなわちtextit{absolute-unified} UADに対処する,単純かつ強力な手法を提案する。
この困難な環境では、さまざまなオブジェクトが異常スコアの分布をミスマッチさせています。
クラス情報を知ることなく,各暗黙のクラス毎のスコア分布を一致させるクラス非依存分布アライメント(CADA, Class-Agnostic Distribution Alignment)を提案する。
CADAの本質は、このクラスの任意の画像、正常または異常なサンプルのそれぞれのクラスのスコア分布を予測することである。
一般的なコンポーネントとして、CADAは絶対統一設定の下でほぼ全てのUADメソッドのポテンシャルを活性化することができる。
我々のアプローチは、MVTec AD と VisA という2つの人気のある UAD ベンチマークデータセットに対して提案された設定の下で広く評価されている。
関連論文リスト
- Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
統一型異常検出(MINT-AD)のためのマルチクラスインプリシトニューラル表現変換器を提案する。
マルチクラス分布を学習することにより、モデルが変換器デコーダのクラス対応クエリ埋め込みを生成する。
MINT-ADは、カテゴリと位置情報を特徴埋め込み空間に投影することができ、さらに分類と事前確率損失関数によって監督される。
論文 参考訳(メタデータ) (2024-03-21T08:08:31Z) - Hierarchical Gaussian Mixture Normalizing Flow Modeling for Unified Anomaly Detection [12.065053799927506]
本稿では,一貫した異常検出を実現するための新しい階層型ガウス混合流れモデリング法を提案する。
我々のHGADは,クラス間ガウス混合モデリングとクラス内混合クラスセンター学習の2つの重要な構成要素から構成されている。
提案手法を4つの実世界のADベンチマークで評価し,従来のNFベースのAD手法を大幅に改善し,SOTA統合AD手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T07:21:37Z) - Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors [11.616494893839757]
オブジェクト検出(OD)のドメイン適応手法は、ソースドメインとターゲットドメイン間の特徴調整を促進することによって、分散シフトの影響を軽減する。
ODのための最先端MSDA手法の多くは、クラスに依存しない方法で特徴アライメントを実行する。
ドメイン間で各オブジェクトカテゴリのインスタンスをアライメントするMSDAのための注目型クラス条件アライメント手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T23:31:41Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
本稿では,修正正規化識別変分オートエンコーダ(RD-VAE)によって得られたクラス識別特性を特徴抽出プロセスに組み込んだ新しいモデルを提案する。
提案した正規化識別型超球型特徴適応(RD-CFA)は,多クラス異常検出のための解である。
論文 参考訳(メタデータ) (2023-11-24T14:26:07Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - mixed attention auto encoder for multi-class industrial anomaly
detection [2.8519768339207356]
単一モデルを用いたマルチクラス異常検出を実現するために,MAAE (Mixed-attention Auto Encoder) を提案する。
異なるカテゴリーの分布パターンの多様さによる性能劣化を軽減するために,空間的注意とチャネル的注意を用いた。
MAAEは、最先端の手法と比較して、ベンチマークデータセットで顕著なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-09-22T08:17:48Z) - Data-Efficient and Interpretable Tabular Anomaly Detection [54.15249463477813]
本稿では,ホワイトボックスモデルクラスである一般化付加モデルを適用し,異常を検出する新しいフレームワークを提案する。
さらに、提案フレームワークであるDIADは、ラベル付きデータの少量を組み込んで、半教師付き設定における異常検出性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2022-03-03T22:02:56Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model Adaptation (UMAD)フレームワークは、ソースデータにアクセスせずに両方のUDAシナリオを処理する。
未知のサンプルと未知のサンプルを識別するのに役立つ情報整合性スコアを開発した。
オープンセットおよびオープンパーティルセット UDA シナリオの実験では、UMAD が最先端のデータ依存手法に匹敵する性能を示した。
論文 参考訳(メタデータ) (2021-12-16T01:22:59Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。