論文の概要: MugenNet: A Novel Combined Convolution Neural Network and Transformer Network with its Application for Colonic Polyp Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.00726v1
- Date: Sun, 31 Mar 2024 15:56:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:11:04.494558
- Title: MugenNet: A Novel Combined Convolution Neural Network and Transformer Network with its Application for Colonic Polyp Image Segmentation
- Title(参考訳): MugenNet: 新たな畳み込みニューラルネットワークとトランスフォーマーネットワークの併用と植民地ポリプ画像分割への応用
- Authors: Chen Peng, Zhiqin Qian, Kunyu Wang, Qi Luo, Zhuming Bi, Wenjun Zhang,
- Abstract要約: 大腸内視鏡検査では, 正確なポリープ画像分割が重要である。
CNNは、一般的な自動セグメンテーション手法であるが、その主な欠点は、長い訓練時間である。
トランスフォーマーは、情報ごとに異なる重みを割り当てるセルフアテンション機構を利用する。
本稿では,CNNとTransformerを組み合わせることで,両者の強度を維持する手法を提案する。
- 参考スコア(独自算出の注目度): 11.382850637998814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical image segmentation is a very important part in disease diagnosis. The term "colonic polyps" refers to polypoid lesions that occur on the surface of the colonic mucosa within the intestinal lumen. In clinical practice, early detection of polyps is conducted through colonoscopy examinations and biomedical image processing. Therefore, the accurate polyp image segmentation is of great significance in colonoscopy examinations. Convolutional Neural Network (CNN) is a common automatic segmentation method, but its main disadvantage is the long training time. Transformer utilizes a self-attention mechanism, which essentially assigns different importance weights to each piece of information, thus achieving high computational efficiency during segmentation. However, a potential drawback is the risk of information loss. In the study reported in this paper, based on the well-known hybridization principle, we proposed a method to combine CNN and Transformer to retain the strengths of both, and we applied this method to build a system called MugenNet for colonic polyp image segmentation. We conducted a comprehensive experiment to compare MugenNet with other CNN models on five publicly available datasets. The ablation experiment on MugentNet was conducted as well. The experimental results show that MugenNet achieves significantly higher processing speed and accuracy compared with CNN alone. The generalized implication with our work is a method to optimally combine two complimentary methods of machine learning.
- Abstract(参考訳): バイオメディカルイメージセグメンテーションは、疾患の診断において非常に重要な部分である。
大腸ポリープ(英:colonic polyps)とは、大腸腔内の大腸粘膜表面に発生するポリポイド病変のこと。
臨床では大腸内視鏡検査および生医学的画像処理により早期にポリープの検出を行う。
したがって,大腸内視鏡検査では,正確なポリープ画像分割が重要である。
畳み込みニューラルネットワーク(CNN)は、一般的な自動セグメンテーション手法であるが、その主な欠点は長い訓練時間である。
トランスフォーマーは、本質的に異なる重み付けを各情報に割り当てるセルフアテンション機構を利用し、セグメンテーション中に高い計算効率を達成する。
しかし、潜在的な欠点は情報損失のリスクである。
本稿では,CNNとTransformerを併用して両者の強度を維持する手法を提案し,この手法を用いて,大腸ポリープ画像分割のための MugenNet というシステムを構築した。
5つの公開データセット上で,MugenNetと他のCNNモデルを比較するための総合的な実験を行った。
MugentNetのアブレーション実験も行われた。
実験の結果,MuginNetはCNN単独に比べて処理速度と精度が著しく向上していることがわかった。
我々の研究における一般化された意味は、機械学習の2つの補完的手法を最適に組み合わせる方法である。
関連論文リスト
- BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
本研究では,ポリプセグメンテーションの精度を高めるために,残差学習と注意法を組み合わせた畳み込みニューラルネットワークアーキテクチャであるBetterNetを提案する。
BetterNetは、ポリープの検出と癌の早期認識を強化するために、コンピュータ支援診断技術を統合することを約束している。
論文 参考訳(メタデータ) (2024-05-05T21:08:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Transformer-Unet: Raw Image Processing with Unet [4.7944896477309555]
Unetの機能マップの代わりに、生画像にトランスフォーマーモジュールを追加することで、Transformer-Unetを提案する。
実験では、エンド・ツー・エンドのネットワークを構築し、従来の多くのUnetベースのアルゴリズムよりもセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2021-09-17T09:03:10Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
臨床的には、正確なポリープセグメンテーションは大腸癌の早期発見に重要な情報を提供する。
既存のほとんどの手法はU字型構造に基づいており、デコーダで段階的に異なるレベルの特徴を融合させるために要素ワイド付加または結合を用いる。
大腸内視鏡画像からポリプを抽出するマルチスケールサブトラクションネットワーク(MSNet)を提案する。
論文 参考訳(メタデータ) (2021-08-11T07:54:07Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
大腸内視鏡画像からの正確な診断を支援するためには,コンピュータ支援診断システムが必要である。
これまでのほとんどの研究では、Narrow-Band Imaging (NBI) や他の拡張画像を用いて、ポリプの分化モデルの開発を試みている。
正確な大腸ポリープ分類のための教師/学生アーキテクチャに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-05T09:31:46Z) - TransMed: Transformers Advance Multi-modal Medical Image Classification [4.500880052705654]
畳み込みニューラルネットワーク(CNN)は、医療画像解析タスクで非常に競争力のあるパフォーマンスを示しています。
トランスフォーマーはコンピュータビジョンに適用され、大規模なデータセットで顕著な成功を収めた。
TransMedはCNNとトランスフォーマーの利点を組み合わせて、画像の低レベル特徴を効率的に抽出する。
論文 参考訳(メタデータ) (2021-03-10T08:57:53Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - C-Net: A Reliable Convolutional Neural Network for Biomedical Image
Classification [6.85316573653194]
生体医用画像の分類を行うために,C-Netと呼ばれる複数のネットワークの結合からなる新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
C-Netモデルは、両方のデータセットの個々のメトリクスにおける他のモデルよりも優れており、誤分類はゼロである。
論文 参考訳(メタデータ) (2020-10-30T20:03:20Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
本研究では,スムーズかつロバストな画像分割を実現するために,空間拘束型深部畳み込みニューラルネットワーク(DCNN)を提案する。
提案手法は神経線維分節に対する角膜共焦点顕微鏡(CCM)画像に基づいて評価された。
論文 参考訳(メタデータ) (2020-04-20T16:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。