Intensity-based 3D motion correction for cardiac MR images
- URL: http://arxiv.org/abs/2404.00767v1
- Date: Sun, 31 Mar 2024 18:45:13 GMT
- Title: Intensity-based 3D motion correction for cardiac MR images
- Authors: Nil Stolt-Ansó, Vasiliki Sideri-Lampretsa, Maik Dannecker, Daniel Rueckert,
- Abstract summary: We propose an algorithm that simultaneously aligns all SA and LA slices by maximizing the pair-wise intensity agreement between their intersections.
Unlike previous works, our approach is formulated as a subject-specific optimization problem and requires no prior knowledge of the underlying anatomy.
- Score: 9.413178499853156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac magnetic resonance (CMR) image acquisition requires subjects to hold their breath while 2D cine images are acquired. This process assumes that the heart remains in the same position across all slices. However, differences in breathhold positions or patient motion introduce 3D slice misalignments. In this work, we propose an algorithm that simultaneously aligns all SA and LA slices by maximizing the pair-wise intensity agreement between their intersections. Unlike previous works, our approach is formulated as a subject-specific optimization problem and requires no prior knowledge of the underlying anatomy. We quantitatively demonstrate that the proposed method is robust against a large range of rotations and translations by synthetically misaligning 10 motion-free datasets and aligning them back using the proposed method.
Related papers
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning [11.177851736773823]
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and diagnosis of cardiovascular diseases.
Most of the previous methods focus on estimating pixel-/voxel-wise motion fields in the full image space.
In this work, we model the heart as a 3D geometric mesh and propose a novel deep learning-based method that can estimate 3D motion of the heart mesh from 2D short-axis CMR images.
arXiv Detail & Related papers (2022-09-05T15:10:27Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer vision.
Our work highlights the link between some well-known differentiable formulations and randomly smoothed renderings.
We apply our method to 3D scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh reconstruction.
arXiv Detail & Related papers (2021-10-18T08:56:23Z) - Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation [13.477290490742224]
Super-resolution in medical imaging aims to increase the resolution of images but is conventionally trained on features from low resolution datasets.
Here we propose a semi-supervised multi-task generative adversarial network (Gemini-GAN) that performs joint super-resolution of the images and their labels.
Our proposed approach is extensively evaluated on two transnational multi-ethnic populations of 1,331 and 205 adults respectively.
arXiv Detail & Related papers (2021-07-16T15:42:39Z) - Joint Motion Correction and Super Resolution for Cardiac Segmentation
via Latent Optimisation [18.887520377396925]
We propose a novel latent optimisation framework that jointly performs motion correction and super resolution for cardiac image segmentations.
Experiments on two cardiac MR datasets show that the proposed framework achieves high performance, comparable to state-of-the-art super-resolution approaches.
arXiv Detail & Related papers (2021-07-08T15:14:00Z) - Extreme Rotation Estimation using Dense Correlation Volumes [73.35119461422153]
We present a technique for estimating the relative 3D rotation of an RGB image pair in an extreme setting.
We observe that, even when images do not overlap, there may be rich hidden cues as to their geometric relationship.
We propose a network design that can automatically learn such implicit cues by comparing all pairs of points between the two input images.
arXiv Detail & Related papers (2021-04-28T02:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.