Rehearsal-Free Modular and Compositional Continual Learning for Language Models
- URL: http://arxiv.org/abs/2404.00790v1
- Date: Sun, 31 Mar 2024 20:28:44 GMT
- Title: Rehearsal-Free Modular and Compositional Continual Learning for Language Models
- Authors: Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, Hinrich Schütze,
- Abstract summary: Continual learning aims at incrementally acquiring new knowledge while not forgetting existing knowledge.
We propose MoCL, a rehearsal-free Modular and Compositional Continual Learning framework.
- Score: 48.07144492109635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning aims at incrementally acquiring new knowledge while not forgetting existing knowledge. To overcome catastrophic forgetting, methods are either rehearsal-based, i.e., store data examples from previous tasks for data replay, or isolate parameters dedicated to each task. However, rehearsal-based methods raise privacy and memory issues, and parameter-isolation continual learning does not consider interaction between tasks, thus hindering knowledge transfer. In this work, we propose MoCL, a rehearsal-free Modular and Compositional Continual Learning framework which continually adds new modules to language models and composes them with existing modules. Experiments on various benchmarks show that MoCL outperforms state of the art and effectively facilitates knowledge transfer.
Related papers
- A Unified Framework for Continual Learning and Machine Unlearning [9.538733681436836]
Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.
We introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation.
Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
arXiv Detail & Related papers (2024-08-21T06:49:59Z) - Learn it or Leave it: Module Composition and Pruning for Continual Learning [48.07144492109635]
MoCL-P is a lightweight continual learning method that balances knowledge integration and computational overhead.
Our evaluation shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times.
arXiv Detail & Related papers (2024-06-26T19:18:28Z) - SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models [71.78800549517298]
Continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world.
Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input.
We propose a novel Shared Attention Framework (SAPT) to align the PET learning and selection via the Shared Attentive Learning & Selection module.
arXiv Detail & Related papers (2024-01-16T11:45:03Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
We address the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information.
We introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload.
arXiv Detail & Related papers (2022-07-11T16:01:27Z) - Continual Prompt Tuning for Dialog State Tracking [58.66412648276873]
A desirable dialog system should be able to continually learn new skills without forgetting old ones.
We present Continual Prompt Tuning, a parameter-efficient framework that not only avoids forgetting but also enables knowledge transfer between tasks.
arXiv Detail & Related papers (2022-03-13T13:22:41Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.